mirror of https://github.com/kubernetes/kops.git
				
				
				
			
		
			
				
	
	
		
			230 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			230 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Go
		
	
	
	
| /*
 | |
| Copyright 2023 The Kubernetes Authors.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License.
 | |
| */
 | |
| 
 | |
| package set
 | |
| 
 | |
| import (
 | |
| 	"sort"
 | |
| )
 | |
| 
 | |
| // Empty is public since it is used by some internal API objects for conversions between external
 | |
| // string arrays and internal sets, and conversion logic requires public types today.
 | |
| type Empty struct{}
 | |
| 
 | |
| // Set is a set of the same type elements, implemented via map[ordered]struct{} for minimal memory consumption.
 | |
| type Set[E ordered] map[E]Empty
 | |
| 
 | |
| // New creates a new set.
 | |
| func New[E ordered](items ...E) Set[E] {
 | |
| 	ss := Set[E]{}
 | |
| 	ss.Insert(items...)
 | |
| 	return ss
 | |
| }
 | |
| 
 | |
| // KeySet creates a Set[E] from a keys of a map[E](? extends interface{}).
 | |
| func KeySet[E ordered, A any](theMap map[E]A) Set[E] {
 | |
| 	ret := Set[E]{}
 | |
| 	for key := range theMap {
 | |
| 		ret.Insert(key)
 | |
| 	}
 | |
| 	return ret
 | |
| }
 | |
| 
 | |
| // Insert adds items to the set.
 | |
| func (s Set[E]) Insert(items ...E) Set[E] {
 | |
| 	for _, item := range items {
 | |
| 		s[item] = Empty{}
 | |
| 	}
 | |
| 	return s
 | |
| }
 | |
| 
 | |
| // Delete removes all items from the set.
 | |
| func (s Set[E]) Delete(items ...E) Set[E] {
 | |
| 	for _, item := range items {
 | |
| 		delete(s, item)
 | |
| 	}
 | |
| 	return s
 | |
| }
 | |
| 
 | |
| // Has returns true if and only if item is contained in the set.
 | |
| func (s Set[E]) Has(item E) bool {
 | |
| 	_, contained := s[item]
 | |
| 	return contained
 | |
| }
 | |
| 
 | |
| // HasAll returns true if and only if all items are contained in the set.
 | |
| func (s Set[E]) HasAll(items ...E) bool {
 | |
| 	for _, item := range items {
 | |
| 		if !s.Has(item) {
 | |
| 			return false
 | |
| 		}
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // HasAny returns true if any items are contained in the set.
 | |
| func (s Set[E]) HasAny(items ...E) bool {
 | |
| 	for _, item := range items {
 | |
| 		if s.Has(item) {
 | |
| 			return true
 | |
| 		}
 | |
| 	}
 | |
| 	return false
 | |
| }
 | |
| 
 | |
| // Union returns a new set which includes items in either s1 or s2.
 | |
| // For example:
 | |
| // s1 = {a1, a2}
 | |
| // s2 = {a3, a4}
 | |
| // s1.Union(s2) = {a1, a2, a3, a4}
 | |
| // s2.Union(s1) = {a1, a2, a3, a4}
 | |
| func (s Set[E]) Union(s2 Set[E]) Set[E] {
 | |
| 	result := Set[E]{}
 | |
| 	result.Insert(s.UnsortedList()...)
 | |
| 	result.Insert(s2.UnsortedList()...)
 | |
| 	return result
 | |
| }
 | |
| 
 | |
| // Len returns the number of elements in the set.
 | |
| func (s Set[E]) Len() int {
 | |
| 	return len(s)
 | |
| }
 | |
| 
 | |
| // Intersection returns a new set which includes the item in BOTH s1 and s2
 | |
| // For example:
 | |
| // s1 = {a1, a2}
 | |
| // s2 = {a2, a3}
 | |
| // s1.Intersection(s2) = {a2}
 | |
| func (s Set[E]) Intersection(s2 Set[E]) Set[E] {
 | |
| 	var walk, other Set[E]
 | |
| 	result := Set[E]{}
 | |
| 	if s.Len() < s2.Len() {
 | |
| 		walk = s
 | |
| 		other = s2
 | |
| 	} else {
 | |
| 		walk = s2
 | |
| 		other = s
 | |
| 	}
 | |
| 	for key := range walk {
 | |
| 		if other.Has(key) {
 | |
| 			result.Insert(key)
 | |
| 		}
 | |
| 	}
 | |
| 	return result
 | |
| }
 | |
| 
 | |
| // IsSuperset returns true if and only if s1 is a superset of s2.
 | |
| func (s Set[E]) IsSuperset(s2 Set[E]) bool {
 | |
| 	for item := range s2 {
 | |
| 		if !s.Has(item) {
 | |
| 			return false
 | |
| 		}
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // Difference returns a set of objects that are not in s2
 | |
| // For example:
 | |
| // s1 = {a1, a2, a3}
 | |
| // s2 = {a1, a2, a4, a5}
 | |
| // s1.Difference(s2) = {a3}
 | |
| // s2.Difference(s1) = {a4, a5}
 | |
| func (s Set[E]) Difference(s2 Set[E]) Set[E] {
 | |
| 	result := Set[E]{}
 | |
| 	for key := range s {
 | |
| 		if !s2.Has(key) {
 | |
| 			result.Insert(key)
 | |
| 		}
 | |
| 	}
 | |
| 	return result
 | |
| }
 | |
| 
 | |
| // Equal returns true if and only if s1 is equal (as a set) to s2.
 | |
| // Two sets are equal if their membership is identical.
 | |
| func (s Set[E]) Equal(s2 Set[E]) bool {
 | |
| 	return s.Len() == s2.Len() && s.IsSuperset(s2)
 | |
| }
 | |
| 
 | |
| type sortableSlice[E ordered] []E
 | |
| 
 | |
| func (s sortableSlice[E]) Len() int {
 | |
| 	return len(s)
 | |
| }
 | |
| func (s sortableSlice[E]) Less(i, j int) bool { return s[i] < s[j] }
 | |
| func (s sortableSlice[E]) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }
 | |
| 
 | |
| // SortedList returns the contents as a sorted slice.
 | |
| func (s Set[E]) SortedList() []E {
 | |
| 	res := make(sortableSlice[E], 0, s.Len())
 | |
| 	for key := range s {
 | |
| 		res = append(res, key)
 | |
| 	}
 | |
| 	sort.Sort(res)
 | |
| 	return res
 | |
| }
 | |
| 
 | |
| // UnsortedList returns the slice with contents in random order.
 | |
| func (s Set[E]) UnsortedList() []E {
 | |
| 	res := make([]E, 0, len(s))
 | |
| 	for key := range s {
 | |
| 		res = append(res, key)
 | |
| 	}
 | |
| 	return res
 | |
| }
 | |
| 
 | |
| // PopAny returns a single element from the set.
 | |
| func (s Set[E]) PopAny() (E, bool) {
 | |
| 	for key := range s {
 | |
| 		s.Delete(key)
 | |
| 		return key, true
 | |
| 	}
 | |
| 	var zeroValue E
 | |
| 	return zeroValue, false
 | |
| }
 | |
| 
 | |
| // Clone returns a new set which is a copy of the current set.
 | |
| func (s Set[T]) Clone() Set[T] {
 | |
| 	result := make(Set[T], len(s))
 | |
| 	for key := range s {
 | |
| 		result.Insert(key)
 | |
| 	}
 | |
| 	return result
 | |
| }
 | |
| 
 | |
| // SymmetricDifference returns a set of elements which are in either of the sets, but not in their intersection.
 | |
| // For example:
 | |
| // s1 = {a1, a2, a3}
 | |
| // s2 = {a1, a2, a4, a5}
 | |
| // s1.SymmetricDifference(s2) = {a3, a4, a5}
 | |
| // s2.SymmetricDifference(s1) = {a3, a4, a5}
 | |
| func (s Set[T]) SymmetricDifference(s2 Set[T]) Set[T] {
 | |
| 	return s.Difference(s2).Union(s2.Difference(s))
 | |
| }
 | |
| 
 | |
| // Clear empties the set.
 | |
| // It is preferable to replace the set with a newly constructed set,
 | |
| // but not all callers can do that (when there are other references to the map).
 | |
| // In some cases the set *won't* be fully cleared, e.g. a Set[float32] containing NaN
 | |
| // can't be cleared because NaN can't be removed.
 | |
| // For sets containing items of a type that is reflexive for ==,
 | |
| // this is optimized to a single call to runtime.mapclear().
 | |
| func (s Set[T]) Clear() Set[T] {
 | |
| 	for key := range s {
 | |
| 		delete(s, key)
 | |
| 	}
 | |
| 	return s
 | |
| }
 |