zh-translation: content/zh/docs/concepts/architecture/controller.md (#18439)
* zh-translation: content/zh/docs/concepts/architecture/controller.md * fix build error * fix review issues * fix review issues * fix review issue
This commit is contained in:
parent
d0357866da
commit
5469d4417c
|
@ -0,0 +1,252 @@
|
|||
---
|
||||
title: 控制器
|
||||
content_template: templates/concept
|
||||
weight: 30
|
||||
---
|
||||
|
||||
{{% capture overview %}}
|
||||
<!--
|
||||
In robotics and automation, a _control loop_ is
|
||||
a non-terminating loop that regulates the state of a system.
|
||||
|
||||
Here is one example of a control loop: a thermostat in a room.
|
||||
|
||||
When you set the temperature, that's telling the thermostat
|
||||
about your *desired state*. The actual room temperature is the
|
||||
*current state*. The thermostat acts to bring the current state
|
||||
closer to the desired state, by turning equipment on or off.
|
||||
-->
|
||||
|
||||
在机器人技术和自动化中,控制环是一个控制系统状态的不终止的循环。
|
||||
|
||||
这是一个控制环的例子:房间里的温度自动调节器。
|
||||
|
||||
当你设置了温度,告诉了温度自动调节器你的*期望状态*。房间的实际温度是*当前状态*。通过对设备的开关控制,温度自动调节器让其当前状态接近期望状态。
|
||||
|
||||
{{< glossary_definition term_id="controller" length="short">}}
|
||||
|
||||
{{% /capture %}}
|
||||
|
||||
|
||||
{{% capture body %}}
|
||||
<!--
|
||||
## Controller pattern
|
||||
|
||||
A controller tracks at least one Kubernetes resource type.
|
||||
These [objects](/docs/concepts/overview/working-with-objects/kubernetes-objects/)
|
||||
have a spec field that represents the desired state. The
|
||||
controller(s) for that resource are responsible for making the current
|
||||
state come closer to that desired state.
|
||||
|
||||
The controller might carry the action out itself; more commonly, in Kubernetes,
|
||||
a controller will send messages to the
|
||||
{{< glossary_tooltip text="API server" term_id="kube-apiserver" >}} that have
|
||||
useful side effects. You'll see examples of this below.
|
||||
|
||||
{{< comment >}}
|
||||
Some built-in controllers, such as the namespace controller, act on objects
|
||||
that do not have a spec. For simplicity, this page omits explaining that
|
||||
detail.
|
||||
{{< /comment >}}
|
||||
-->
|
||||
## 控制器模式 {#controller-pattern}
|
||||
|
||||
一个控制器至少追踪一种类型的 Kubernetes 资源。这些[对象](/docs/concepts/overview/working-with-objects/kubernetes-objects/)有一个代表期望状态的指定字段。正对这种资源的控制器就是要使他的当前状态接近与期望状态。
|
||||
|
||||
控制器可能会自行执行操作;在 Kubernetes 中更常见的是一个控制器会发送信息给 {{< glossary_tooltip text="API 服务器" term_id="kube-apiserver" >}},这会有副作用。看下面这个例子。
|
||||
|
||||
{{< comment >}}
|
||||
一些内置的控制器,比如命名空间控制器,针对没有指定命名空间的对象。为了简单起见,这篇文章没有详细介绍这些细节。
|
||||
{{< /comment >}}
|
||||
|
||||
<!--
|
||||
### Control via API server
|
||||
|
||||
The {{< glossary_tooltip term_id="job" >}} controller is an example of a
|
||||
Kubernetes built-in controller. Built-in controllers manage state by
|
||||
interacting with the cluster API server.
|
||||
|
||||
Job is a Kubernetes resource that runs a
|
||||
{{< glossary_tooltip term_id="pod" >}}, or perhaps several Pods, to carry out
|
||||
a task and then stop.
|
||||
|
||||
(Once [scheduled](/docs/concepts/scheduling/), Pod objects become part of the
|
||||
desired state for a kubelet).
|
||||
|
||||
When the Job controller sees a new task it makes sure that, somewhere
|
||||
in your cluster, the kubelets on a set of Nodes are running the right
|
||||
number of Pods to get the work done.
|
||||
The Job controller does not run any Pods or containers
|
||||
itself. Instead, the Job controller tells the API server to create or remove
|
||||
Pods.
|
||||
Other components in the
|
||||
{{< glossary_tooltip text="control plane" term_id="control-plane" >}}
|
||||
act on the new information (there are new Pods to schedule and run),
|
||||
and eventually the work is done.
|
||||
-->
|
||||
|
||||
### 通过 API 服务器来控制 {#control-via-API-server}
|
||||
|
||||
{{< glossary_tooltip term_id="job" >}} 控制器是一个 Kubernetes 内置控制器的例子。内置控制器通过和集群 API 服务器交互来管理状态。
|
||||
|
||||
Job 是一种 Kubernetes 资源,它运行一个 {{< glossary_tooltip term_id="pod" >}},或者可能是多个 Pod,来执行一个任务然后停止。
|
||||
|
||||
(一旦[被调度了](/docs/concepts/scheduling/)),对 kubelet 来说 Pod 对象就会变成了期望状态的一部分。
|
||||
|
||||
在集群中,当 Job 控制器拿到新任务时,它会保证一组 Node 节点上的 kubelet 可以运行正确数量的 Pod 来完成工作。
|
||||
Job 控制器不会自己运行任何的 Pod 或者容器。Job 控制器是通知 API 服务器来创建或者移除 Pod。
|
||||
{{< glossary_tooltip text="控制平面" term_id="control-plane" >}}中的其它组件根据新的消息而反应(调度新的 Pod 并且运行它)并且最终完成工作。
|
||||
|
||||
<!--
|
||||
After you create a new Job, the desired state is for that Job to be completed.
|
||||
The Job controller makes the current state for that Job be nearer to your
|
||||
desired state: creating Pods that do the work you wanted for that Job, so that
|
||||
the Job is closer to completion.
|
||||
|
||||
Controllers also update the objects that configure them.
|
||||
For example: once the work is done for a Job, the Job controller
|
||||
updates that Job object to mark it `Finished`.
|
||||
|
||||
(This is a bit like how some thermostats turn a light off to
|
||||
indicate that your room is now at the temperature you set).
|
||||
-->
|
||||
|
||||
创建新 Job 后,所期望的状态就是完成这个 Job。Job 控制器会让 Job 的当前状态不断接近期望状态:创建为 Job 要完成工作所需要的 Pod,使 Job 的状态接近完成。
|
||||
|
||||
控制器也会更新配置对象。例如:一旦 Job 的工作完成了,Job 控制器会更新 Job 对象的状态为 `Finished`。
|
||||
|
||||
(这有点像温度自动调节器关闭了一个灯,以此来告诉你房间的温度现在到你设定的值了)。
|
||||
|
||||
<!--
|
||||
### Direct control
|
||||
|
||||
By contrast with Job, some controllers need to make changes to
|
||||
things outside of your cluster.
|
||||
|
||||
For example, if you use a control loop to make sure there
|
||||
are enough {{< glossary_tooltip text="Nodes" term_id="node" >}}
|
||||
in your cluster, then that controller needs something outside the
|
||||
current cluster to set up new Nodes when needed.
|
||||
|
||||
Controllers that interact with external state find their desired state from
|
||||
the API server, then communicate directly with an external system to bring
|
||||
the current state closer in line.
|
||||
|
||||
(There actually is a controller that horizontally scales the
|
||||
nodes in your cluster. See
|
||||
[Cluster autoscaling](/docs/tasks/administer-cluster/cluster-management/#cluster-autoscaling)).
|
||||
-->
|
||||
|
||||
### 直接控制 {#direct-control}
|
||||
|
||||
相比 Job 控制器,有些控制器需要对集群外的一些东西进行修改。
|
||||
|
||||
例如,如果你使用一个控制环来保证集群中有足够的{{< glossary_tooltip text="节点" term_id="node" >}},那么控制就需要当前集群外的一些服务在需要时创建新节点。
|
||||
|
||||
和外部状态交互的控制器从 API 服务器获取到它想要的状态,然后直接和外部系统进行通信并使当前状态更接近期望状态。
|
||||
|
||||
(实际上有一个控制器可以水平地扩展集群中的节点。请看[集群自动扩缩容](/docs/tasks/administer-cluster/cluster-management/#cluster-autoscaling))。
|
||||
|
||||
<!--
|
||||
## Desired versus current state {#desired-vs-current}
|
||||
|
||||
Kubernetes takes a cloud-native view of systems, and is able to handle
|
||||
constant change.
|
||||
|
||||
Your cluster could be changing at any point as work happens and
|
||||
control loops automatically fix failures. This means that,
|
||||
potentially, your cluster never reaches a stable state.
|
||||
|
||||
As long as the controllers for your cluster are running and able to make
|
||||
useful changes, it doesn't matter if the overall state is or is not stable.
|
||||
-->
|
||||
|
||||
## 期望状态与当前状态 {#desired-vs-current}
|
||||
|
||||
Kubernetes 采用了系统的云原生视图,并且可以处理持续的变化。
|
||||
|
||||
在任务执行时,集群随时都可能被修改,并且控制环会自动的修复故障。这意味着很可能集群永远不会达到稳定状态。
|
||||
|
||||
只要集群中控制器的在运行并且进行有效的修改,整体状态的稳定与否是无关紧要的。
|
||||
<!--
|
||||
## Design
|
||||
|
||||
As a tenet of its design, Kubernetes uses lots of controllers that each manage
|
||||
a particular aspect of cluster state. Most commonly, a particular control loop
|
||||
(controller) uses one kind of resource as its desired state, and has a different
|
||||
kind of resource that it manages to make that desired state happen.
|
||||
|
||||
It's useful to have simple controllers rather than one, monolithic set of control
|
||||
loops that are interlinked. Controllers can fail, so Kubernetes is designed to
|
||||
allow for that.
|
||||
|
||||
For example: a controller for Jobs tracks Job objects (to discover
|
||||
new work) and Pod object (to run the Jobs, and then to see when the work is
|
||||
finished). In this case something else creates the Jobs, whereas the Job
|
||||
controller creates Pods.
|
||||
|
||||
{{< note >}}
|
||||
There can be several controllers that create or update the same kind of object.
|
||||
Behind the scenes, Kubernetes controllers make sure that they only pay attention
|
||||
to the resources linked to their controlling resource.
|
||||
|
||||
For example, you can have Deployments and Jobs; these both create Pods.
|
||||
The Job controller does not delete the Pods that your Deployment created,
|
||||
because there is information ({{< glossary_tooltip term_id="label" text="labels" >}})
|
||||
the controllers can use to tell those Pods apart.
|
||||
{{< /note >}}
|
||||
-->
|
||||
## 设计 {#design}
|
||||
|
||||
作为设计的一个原则,Kubernetes 使用了很多控制器,每个控制器管理集群状态的一个特定方面。最常见的一个特定的控制器使用一种类型的资源作为它的期望状态,控制器管理控制另外一种类型的资源向它的期望状态发展。
|
||||
|
||||
使用简单的控制器而不是一组相互连接的单体控制环是很有用的。控制器会失败,所以 Kubernetes 的设计是考虑到了这一点。
|
||||
|
||||
例如:为 Job 追踪 Job 对象(发现新工作)和 Pod 对象(运行 Job,并且等工作完成)的控制器。在本例中,其它东西创建作业,而作业控制器创建 Pod。
|
||||
|
||||
{{< note >}}
|
||||
可以有多个控制器来创建或者更新相同类型的对象。在这之后,Kubernetes 控制器确保他们只关心和它们控制资源相关联的资源。
|
||||
|
||||
例如,你可以有 Deployments 和 Jobs;它们都可以创建 Pod。Job 控制器不删除 Deployment 创建的 Pod,因为有信息({{< glossary_tooltip term_id="label" text="标签" >}})让控制器可以区分这些 Pod。
|
||||
{{< /note >}}
|
||||
|
||||
<!--
|
||||
## Ways of running controllers {#running-controllers}
|
||||
|
||||
Kubernetes comes with a set of built-in controllers that run inside
|
||||
the {{< glossary_tooltip term_id="kube-controller-manager" >}}. These
|
||||
built-in controllers provide important core behaviors.
|
||||
|
||||
The Deployment controller and Job controller are examples of controllers that
|
||||
come as part of Kubernetes itself (“built-in” controllers).
|
||||
Kubernetes lets you run a resilient control plane, so that if any of the built-in
|
||||
controllers were to fail, another part of the control plane will take over the work.
|
||||
|
||||
You can find controllers that run outside the control plane, to extend Kubernetes.
|
||||
Or, if you want, you can write a new controller yourself.
|
||||
You can run your own controller as a set of Pods,
|
||||
or externally to Kubernetes. What fits best will depend on what that particular
|
||||
controller does.
|
||||
|
||||
* Read about the [Kubernetes control plane](/docs/concepts/#kubernetes-control-plane)
|
||||
* Discover some of the basic [Kubernetes objects](/docs/concepts/#kubernetes-objects)
|
||||
* Learn more about the [Kubernetes API](/docs/concepts/overview/kubernetes-api/)
|
||||
* If you want to write your own controller, see [Extension Patterns](/docs/concepts/extend-kubernetes/extend-cluster/#extension-patterns) in Extending Kubernetes.
|
||||
-->
|
||||
|
||||
## 运行控制器的方式 {#running-controllers}
|
||||
|
||||
Kubernetes 自带有一组内置的控制器,运行在 {{< glossary_tooltip term_id="kube-controller-manager" >}} 内。这些内置的控制器提供了重要的核心功能。
|
||||
|
||||
Deployment 控制器和 Job 控制器是 Kubernetes 内置控制器的典型例子。Kubernetes 运行一个弹性的控制平面,所以如果任意内置控制器失败了,控制平面的另外一部分会接替它的工作。
|
||||
|
||||
你会发现控制平面外面运行的控制器,扩展了 Kubernetes 的能力。或者,如果你愿意,你也可以写一个新控制器。你可以以一组 Pod 来运行你的控制器,或者运行在 Kubernetes 外面。什么是最合适的控制器,这将取决于特定控制器的功能。
|
||||
|
||||
{{% /capture %}}
|
||||
|
||||
{{% capture whatsnext %}}
|
||||
* 请阅读 [Kubernetes 控制平面](/docs/concepts/#kubernetes-control-plane)
|
||||
* 了解一些基本的 [Kubernetes 对象](/docs/concepts/#kubernetes-objects)
|
||||
* 学习更多的 [Kubernetes API](/docs/concepts/overview/kubernetes-api/)
|
||||
* 如果你想写自己的控制器,请看 Kubernetes 的[扩展模式](/docs/concepts/extend-kubernetes/extend-cluster/#extension-patterns)。
|
||||
{{% /capture %}}
|
Loading…
Reference in New Issue