parent
ab25d99766
commit
b083107ae7
|
|
@ -856,7 +856,7 @@ u_j = \frac{1}{N_j} \sum_{\boldsymbol x\epsilon X_j}\boldsymbol x(j=0,1),
|
|||
$$
|
||||
假设投影直线是向量 $\boldsymbol w$,对任意样本 $\boldsymbol x_i$,它在直线 $w$上的投影为 $\boldsymbol w^Tx_i$,两个类别的中心点 $u_0$, $u_1 $在直线 $w$ 的投影分别为 $\boldsymbol w^Tu_0$ 、$\boldsymbol w^Tu_1$。
|
||||
|
||||
LDA的目标是让两类别的数据中心间的距离 $\| \boldsymbol w^Tu_0 - \boldsymbol w^Tu_1 \|^2_2$ 尽量大,与此同时,希望同类样本投影点的协方差$\boldsymbol w^T \sum_0 \boldsymbol w$、$\boldsymbol w^T \sum_1 \boldsymbol w$ 尽量小,最小化 $\boldsymbol w^T \sum_0 \boldsymbol w - \boldsymbol w^T \sum_1 \boldsymbol w$ 。
|
||||
LDA的目标是让两类别的数据中心间的距离 $\| \boldsymbol w^Tu_0 - \boldsymbol w^Tu_1 \|^2_2$ 尽量大,与此同时,希望同类样本投影点的协方差$\boldsymbol w^T \sum_0 \boldsymbol w$、$\boldsymbol w^T \sum_1 \boldsymbol w$ 尽量小,最小化 $\boldsymbol w^T \sum_0 \boldsymbol w + \boldsymbol w^T \sum_1 \boldsymbol w$ 。
|
||||
定义
|
||||
类内散度矩阵
|
||||
$$
|
||||
|
|
|
|||
Loading…
Reference in New Issue