新增一部分问题
This commit is contained in:
parent
a577ae861b
commit
b9a270b31e
|
|
@ -6,19 +6,19 @@
|
|||
> Contact: qchl0318@163.com
|
||||
> Updater: [sjsdfg](https://github.com/sjsdfg),王超锋
|
||||
|
||||
## 14.1 调试处理
|
||||
关于训练深度最难的事情之一是你要处理的参数的数量,从学习速率到 Momentum(动量梯度下降法)的参数。如果使用 Momentum 或 Adam 优化算法的参数,也许你还得选择层数,也许你还得选择不同层中隐藏单元的数量,也许你还想使用学习率衰减。所以,你使用的不是单一的学习率。接着,当然你可能还需要选择 mini-batch 的大小。
|
||||
## 14.1 写在前面
|
||||
关于训练深度学习模型最难的事情之一是你要处理的参数的数量。无论是从网络本身的层宽(宽度)、层数(深度)、连接方式,还是损失函数的超参数设计和调试,亦或者是学习率、批样本数量、优化器参数等等。这些大量的参数都会有网络模型最终的有效容限直接或者间接的影响。面对如此众多的参数,如果我们要一一对其优化调整,所需的无论是时间、资源都是不切实际。结果证实一些超参数比其它的更为重要,因此认识各个超参数的作用和其可能会造成的影响是深度学习训练中必不可少的一项重要技能。
|
||||
|
||||
结果证实一些超参数比其它的更为重要,我认为,最为广泛的学习应用是,学习速率是需要调试的最重要的超参数。
|
||||
本章节不会过多阐述所有超参数的详细原理,如果需要了解这部分,您可以翻阅前面的基础章节或者查阅相关文献资料。当然,下面会讲到的一些超参数优化的建议是根据笔者们的实践以及部分文献资料得到认知建议,并不是非常严格且一定有效的,很多研究者可能会很不同意某些的观点或有着不同的直觉,这都是可保留讨论的,因为这很依赖于数据本身情况。
|
||||
|
||||
除了,还有一些参数需要调试,例如 Momentum 参数,0.9 就是个很好的默认值。我还会调试 mini-batch 的大小,以确保最优算法运行有效。我还会经常调试隐藏单元,我用橙色圈住的这些,这三个是我觉得其次比较重要的,相对于而言。重要性排第三位的是其他因素,层数有时会产生很大的影响,学习率衰减也是如此。当应用 Adam 算法时,事实上,我从不调试,和,我总是选定其分别为 0.9,0.999 和,如果你想的话也可以调试它们。
|
||||
## 14.2 参数和超参数的区别
|
||||
|
||||
但希望你粗略了解到哪些超参数较为重要,无疑是最重要的,接下来是我用橙色圈住的那些,然后是我用紫色圈住的那些,但这不是严格且快速的标准,我认为,其它深度学习的研究者可能会很不同意我的观点或有着不同的直觉。
|
||||
区分两者最大的一点就是是否通过数据来进行调整,模型参数通常是有数据来驱动调整,超参数则不需要数据来驱动,而是在训练前或者训练中人为的进行调整的参数。例如卷积核的具体核参数就是指模型参数,这是有数据驱动的。而学习率则是人为来进行调整的超参数。这里需要注意的是,通常情况下卷积核数量、卷积核尺寸这些也是超参数,因为网络设计完以后,这些参数同样不是由数据驱动的,注意与卷积核的核参数区分。
|
||||
|
||||
## 14.2 神经网络中一般包含哪些超参数
|
||||
一般可以将超参数分为三类:网络参数、优化参数、正则化参数。
|
||||
通常可以将超参数分为三类:网络参数、优化参数、正则化参数。
|
||||
|
||||
网络参数:可指网络层与层之间的交互方式(相加、相乘或者串接等)、卷积核数量和卷积核尺寸、网络层数(也称深度)和激活函数等。
|
||||
网络参数:可指网络层与层之间的交互方式(相加、相乘或者串接等)、卷积核数量和卷积核尺寸、网络层数(也称深度)和激活函数等。
|
||||
|
||||
优化参数:一般指学习率(learning rate)、批样本数量(batch size)、不同优化器的参数以及部分损失函数的可调参数。
|
||||
|
||||
|
|
@ -30,15 +30,28 @@
|
|||
|
||||
## 14.4 超参数的重要性顺序
|
||||
|
||||
首先,学习率,损失函数上的可调参数。在网络参数、优化参数、正则化参数中最重要的超参数可能就是学习率了。学习率直接控制着训练中网络梯度更新的量级,直接影响着模型的**有效容限能力**;损失函数上的可调参数,这些参数通常情况下需要结合实际的损失函数来调整,大部分情况下这些参数也能很直接的影响到模型的的有效容限能力。这些损失一般可分成三类,第一类辅助损失结合常见的损失函数,起到辅助优化特征表达的作用。例如度量学习中的Center loss,通常结合交叉熵损失伴随一个权重完成一些特定的任务。这种情况下一般建议辅助损失值不高于或者不低于交叉熵损失值的两个数量级;第二类,多任务模型的多个损失函数,每个损失函数之间或独立或相关,用于各自任务,这种情况取决于任务之间本身的相关性,目前笔者并没有一个普适的经验由于提供参考;第三类,独立损失函数,这类损失通常会在特定的任务有显著性的效果。例如RetinaNet中的focal loss,其中的参数***γ***,***α***,对最终的效果会产生较大的影响。这类损失通常论文中会给出特定的建议值。
|
||||
- 首先, 学习率,损失函数上的可调参数。在网络参数、优化参数、正则化参数中最重要的超参数可能就是学习率了。学习率直接控制着训练中网络梯度更新的量级,直接影响着模型的**有效容限能力**;损失函数上的可调参数,这些参数通常情况下需要结合实际的损失函数来调整,大部分情况下这些参数也能很直接的影响到模型的的有效容限能力。这些损失一般可分成三类,第一类辅助损失结合常见的损失函数,起到辅助优化特征表达的作用。例如度量学习中的Center loss,通常结合交叉熵损失伴随一个权重完成一些特定的任务。这种情况下一般建议辅助损失值不高于或者不低于交叉熵损失值的两个数量级;第二类,多任务模型的多个损失函数,每个损失函数之间或独立或相关,用于各自任务,这种情况取决于任务之间本身的相关性,目前笔者并没有一个普适的经验由于提供参考;第三类,独立损失函数,这类损失通常会在特定的任务有显著性的效果。例如RetinaNet中的focal loss,其中的参数***γ***,***α***,对最终的效果会产生较大的影响。这类损失通常论文中会给出特定的建议值。
|
||||
|
||||
其次,批样本数量,动量优化器(Gradient Descent with Momentum)的动量参数***β***。批样本决定了数量梯度下降的方向。过小的批数量,极端情况下,例如batch size为1,即每个样本都去修正一次梯度方向,样本之间的差异越大越难以收敛。若网络中存在批归一化(batchnorm),batch size过小则更难以收敛,甚至垮掉。这是因为数据样本越少,统计量越不具有代表性,噪声也相应的增加。而过大的batch size,会使得梯度方向基本稳定,容易陷入局部最优解,降低精度。一般参考范围会取在(1:1024]之间,当然这个不是绝对的,需要结合具体场景和样本情况;动量衰减参数 ***β***是计算梯度的指数加权平均数,并利用该值来更新参数,设置为 0.9 是一个常见且效果不错的选择;
|
||||
- 其次,批样本数量,动量优化器(Gradient Descent with Momentum)的动量参数***β***。批样本决定了数量梯度下降的方向。过小的批数量,极端情况下,例如batch size为1,即每个样本都去修正一次梯度方向,样本之间的差异越大越难以收敛。若网络中存在批归一化(batchnorm),batch size过小则更难以收敛,甚至垮掉。这是因为数据样本越少,统计量越不具有代表性,噪声也相应的增加。而过大的batch size,会使得梯度方向基本稳定,容易陷入局部最优解,降低精度。一般参考范围会取在(1:1024]之间,当然这个不是绝对的,需要结合具体场景和样本情况;动量衰减参数 ***β***是计算梯度的指数加权平均数,并利用该值来更新参数,设置为 0.9 是一个常见且效果不错的选择;
|
||||
|
||||
最后,Adam优化器的超参数、权重衰减系数、丢弃法比率(dropout)和网络参数。在这里说明下,这些参数重要性放在最后**并不等价于这些参数不重要**。而是表示这些参数在大部分实践中**不建议过多尝试**,例如Adam优化器中的***β1,β2,ϵ***,常设为 0.9、0.999、10−8就会有不错的表现。权重衰减系数通常会有个建议值,例如0.0005 ,使用建议值即可,不必过多尝试。dropout通常会在全连接层之间使用防止过拟合,建议比率控制在[0.2,0.5]之间。使用dropout时需要特别注意两点:一、在RNN中,如果直接放在memory cell中,循环会放大噪声,扰乱学习。一般会建议放在输入和输出层;二、不建议dropout后直接跟上batchnorm,dropout很可能影响batchnorm计算统计量,导致方差偏移,这种情况下会使得推理阶段出现模型完全垮掉的极端情况;网络参数通常也属于超参数的范围内,通常情况下增加网络层数能增加模型的容限能力,但模型真正有效的容限能力还和样本数量和质量、层之间的关系等有关,所以一般情况下会选择先固定网络层数,调优到一定阶段或者有大量的硬件资源支持可以在网络深度上进行进一步调整。
|
||||
|
||||
## 14.5 如何选择调试值?
|
||||
- 最后,Adam优化器的超参数、权重衰减系数、丢弃法比率(dropout)和网络参数。在这里说明下,这些参数重要性放在最后**并不等价于这些参数不重要**。而是表示这些参数在大部分实践中**不建议过多尝试**,例如Adam优化器中的***β1,β2,ϵ***,常设为 0.9、0.999、10−8就会有不错的表现。权重衰减系数通常会有个建议值,例如0.0005 ,使用建议值即可,不必过多尝试。dropout通常会在全连接层之间使用防止过拟合,建议比率控制在[0.2,0.5]之间。使用dropout时需要特别注意两点:一、在RNN中,如果直接放在memory cell中,循环会放大噪声,扰乱学习。一般会建议放在输入和输出层;二、不建议dropout后直接跟上batchnorm,dropout很可能影响batchnorm计算统计量,导致方差偏移,这种情况下会使得推理阶段出现模型完全垮掉的极端情况;网络参数通常也属于超参数的范围内,通常情况下增加网络层数能增加模型的容限能力,但模型真正有效的容限能力还和样本数量和质量、层之间的关系等有关,所以一般情况下会选择先固定网络层数,调优到一定阶段或者有大量的硬件资源支持可以在网络深度上进行进一步调整。
|
||||
|
||||
## 14.5 各类超参数对模型的影响
|
||||
|
||||
## 14.6 为超参数选择合适的范围
|
||||
## 14.7 如何搜索超参数?
|
||||
|
||||
## 14.7 为什么卷积核尺寸都是奇数
|
||||
|
||||
## 14.8 为什么要做权重共享
|
||||
|
||||
## 14.9 如何选取卷积核
|
||||
|
||||
## 14.10 微调为什么需要冻结部分参数
|
||||
|
||||
## 14.11 微调有哪些不同方法
|
||||
|
||||
## 14.12 如何搜索超参数?
|
||||
|
||||
最后,关于如何搜索超参数的问题,我见过大概两种重要的思想流派或人们通常采用的两种重要但不同的方式。
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue