From d1b8b629bcc57b439a1dbcd055aa6733effc59b5 Mon Sep 17 00:00:00 2001 From: jackfrued Date: Thu, 13 Feb 2025 16:57:53 +0800 Subject: [PATCH] =?UTF-8?q?=E4=BF=AE=E6=AD=A3=E4=BA=86=E9=83=A8=E5=88=86?= =?UTF-8?q?=E6=96=87=E6=A1=A3=E4=B8=AD=E7=9A=84=E7=AC=94=E8=AF=AF?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- Day81-90/85.回归模型.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Day81-90/85.回归模型.md b/Day81-90/85.回归模型.md index 2a4d7cf..90b3bdd 100755 --- a/Day81-90/85.回归模型.md +++ b/Day81-90/85.回归模型.md @@ -327,7 +327,7 @@ print(f'决定系数: {r2:.4f}') 岭回归是在线性回归的基础上引入 $\small{L2}$ 正则化项,目的是防止模型过拟合,尤其是当特征数较多或特征之间存在共线性时。岭回归的损失函数如下所示: $$ -L(\beta) = \sum_{i=1}^{m}{(y_{i} - \hat{y}_{i})^{2}} + \lambda \cdot \sum_{j=1}^{n}{\beta_{j}^{2}} +L(\beta) = \sum_{i=1}^{m}{(y_{i} - \hat{y_{i}})^{2}} + \lambda \cdot \sum_{j=1}^{n}{\beta_{j}^{2}} $$ 其中, $\small{L2}$ 正则化项 $\small{\lambda \sum_{j=1}^{n} \beta_{j}^{2}}$ 会惩罚较大的回归系数,相当于缩小了回归系数的大小,但不会使系数为 0(即不会进行特征选择)。可以通过 scikit-learn 库`linear_model`模块的`Ridge`类实现岭回归,代码如下所示。