add cmu11711

This commit is contained in:
Yinmin Zhong 2025-06-07 23:57:28 +08:00
parent c23685e353
commit 6069cc86a5
4 changed files with 89 additions and 2 deletions

View File

@ -0,0 +1,32 @@
# Carnegie Mellon University CS 11-667: Large Language Models Methods and Applications
## 课程简介
- **所属大学**: 卡内基梅隆大学 (Carnegie Mellon University)
- **先修要求**:
- 机器学习的基本知识(相当于课程 10-301/10-601
- 自然语言处理的相关概念(相当于课程 11-411/11-611
- 熟练掌握 Python 编程,了解 PyTorch 或类似的深度学习框架。
- **课程难度**: 🌟🌟🌟🌟🌟🌟
- **课程网站**: [大型语言模型的方法与应用](https://cmu-llms.org/)
《大型语言模型的方法与应用 (11-667)》是一门研究生课程提供关于大型语言模型LLMs最新进展的全面概述。
课程涵盖了语言模型的基础知识、网络架构、训练、推理与评估,并深入探讨了解释性、对齐、涌现能力、扩展定律,以及高效训练和部署的最新技术。学生还将学习 LLM 的部署风险及挑战,并探索其在新应用中的潜力。
### 课程内容:
- 语言模型的基础
- 网络架构、训练与评估
- 涌现能力与扩展定律
- 在自然语言处理及其他领域的应用
- 隐私保护、对齐与鲁棒性
- 部署中的挑战与伦理考虑
### 学习目标:
完成课程后,学生将能够:
- 比较并分析不同的 LLM 模型及其应用场景。
- 使用 PyTorch 实现和训练语言模型。
- 使用开源工具微调并进行预训练模型的推理。
- 理解 LLM 在下游任务中的应用,并评估训练时的决策对这些任务的影响。
- 阅读并理解 LLM 领域的学术论文掌握相关术语如扩展定律、RLHF、提示工程等
- 设计创新方法,将现有大型语言模型应用于新场景。

View File

@ -0,0 +1,27 @@
# CMU 11-711: Advanced Natural Language Processing (ANLP)
## Course Overview
* University: Carnegie Mellon University
* Prerequisites: No strict prerequisites, but students should have experience with Python programming, as well as a background in probability and linear algebra. Prior experience with neural networks is recommended.
* Programming Language: Python
* Course Difficulty: 🌟🌟🌟🌟
* Estimated Workload: 100 hours
This is a graduate-level course covering both foundational and advanced topics in Natural Language Processing (NLP). The syllabus spans word representations, sequence modeling, attention mechanisms, Transformer architectures, and cutting-edge topics such as large language model pretraining, instruction tuning, complex reasoning, multimodality, and model safety. Compared to similar courses, this course stands out for the following reasons:
1. **Comprehensive and research-driven content**: In addition to classical NLP methods, it offers in-depth discussions of recent trends and state-of-the-art techniques such as LLaMa and GPT-4.
2. **Strong practical component**: Each lecture includes code demonstrations and online quizzes, and the final project requires reproducing and improving upon a recent research paper.
3. **Highly interactive**: Active engagement is encouraged through Piazza discussions, Canvas quizzes, and in-class Q&A, resulting in an immersive and well-paced learning experience.
Self-study tips:
* Read the recommended papers before class and follow the reading sequence step-by-step.
* Set up a Python environment and become familiar with PyTorch and Hugging Face, as many hands-on examples are based on these frameworks.
## Course Resources
* Course Website: [https://www.phontron.com/class/anlp-fall2024/](https://www.phontron.com/class/anlp-fall2024/)
* Course Videos: Lecture recordings are available on Canvas (CMU login required)
* Course Texts: Selected classical and cutting-edge research papers + chapters from *A Primer on Neural Network Models for Natural Language Processing* by Yoav Goldberg
* Course Assignments: [https://www.phontron.com/class/anlp-fall2024/assignments/](https://www.phontron.com/class/anlp-fall2024/assignments/)

View File

@ -0,0 +1,27 @@
# CMU 11-711: Advanced Natural Language Processing (ANLP)
## 课程简介
* 所属大学Carnegie Mellon University
* 先修要求:无硬性先修要求,但需具备 Python 编程经验,以及概率论和线性代数基础;有神经网络使用经验者更佳。
* 编程语言Python
* 课程难度:🌟🌟🌟🌟
* 预计学时100 学时
该课程为研究生级别的 NLP 入门与进阶课程覆盖从词表征、序列建模到注意力机制、Transformer 架构,再到大规模语言模型预训练、指令微调与复杂推理、多模态和安全性等前沿主题。与其他同类课程相比,本课程:
1. **内容全面且紧跟最新研究**:除经典算法外,深入讲解近年热门的大模型方法(如 LLaMa、GPT-4 等)。
2. **实践性强**:每次课配套代码演示与在线小测,学期末项目需复现并改进一篇前沿论文。
3. **互动良好**Piazza 讨论、Canvas 测验及现场答疑,学习体验沉浸而有节奏。
自学建议:
* 提前阅读课前推荐文献,跟着阅读顺序循序渐进。
* 准备好 Python 环境并熟悉 PyTorch/Hugging Face因为大量实战代码示例基于此。
## 课程资源
* 课程网站:[https://www.phontron.com/class/anlp-fall2024/](https://www.phontron.com/class/anlp-fall2024/)
* 课程视频:课堂讲座录制并上传至 Canvas需 CMU 帐号登录)
* 课程教材各类经典与前沿论文Goldberg《A Primer on Neural Network Models for Natural Language Processing》章节阅读
* 课程作业:[https://www.phontron.com/class/anlp-fall2024/assignments/](https://www.phontron.com/class/anlp-fall2024/assignments/)

View File

@ -284,8 +284,9 @@ nav:
- 深度生成模型:
- "学习路线图": "深度生成模型/roadmap.md"
- "大语言模型":
- "CMU 11868: Large Language Model System": "深度生成模型/大语言模型/CMU11-868.md"
- "CMU 11667: Large Language Models: Methods and Applications": "深度生成模型/大语言模型/CMU11-667.md"
- "CMU 11-868: Large Language Model System": "深度生成模型/大语言模型/CMU11-868.md"
- "CMU 11-667: Large Language Models: Methods and Applications": "深度生成模型/大语言模型/CMU11-667.md"
- "CMU 11-711: Advanced Natural Language Processing": "深度生成模型/大语言模型/CMU11-711.md"
- 机器学习进阶:
- "学习路线图": "机器学习进阶/roadmap.md"
- "CMU 10-708: Probabilistic Graphical Models": "机器学习进阶/CMU10-708.md"