CS231n: CNN for Visual Recognition
课程简介
- 所属大学:Stanford
- 先修要求:机器学习基础
- 编程语言:Python
- 课程难度:🌟🌟🌟🌟
- 预计学时:80 小时
Stanford 的 CV 入门课,由计算机领域的巨佬李飞飞院士领衔教授(CV 领域划时代的著名数据集 ImageNet 的研究团队),但其内容相对基础且友好,如果上过 CS230 的话可以直接上手 Project 作为练习。
课程资源
- 课程网站:http://cs231n.stanford.edu/
- 课程视频:https://www.bilibili.com/video/BV1nJ411z7fe
- 课程教材:无
- 课程作业:http://cs231n.stanford.edu/schedule.html,3个编程作业
CS231n: CNN for Visual Recognition
Course Introduction
- Affiliated Universities:Stanford
- Prerequisites: Foundations of Machine Learning
- Programming Languages:Python
- Course Difficulty:🌟🌟🌟🌟
- Estimated hours: 80 hours
Stanford's CV introductory class, led by the giant of the computer field, Fei-Fei Li (the research team of the epoch-making famous dataset ImageNet in CV field), but its content is relatively basic and friendly, if you have taken CS230, you can directly start the Project as practice.
Course Resources
- Course Website:http://cs231n.stanford.edu/
- Course Video:https://www.bilibili.com/video/BV1nJ411z7fe
- Course Materials: None
- Coursework:http://cs231n.stanford.edu/schedule.html,3 Programming Assignments