update advanced ml
This commit is contained in:
parent
0d56e7ee6c
commit
edeaf7a62c
|
|
@ -0,0 +1,15 @@
|
|||
## 课程简介
|
||||
- 所属大学:CMU
|
||||
- 先修要求:
|
||||
- 编程语言:
|
||||
- 课程难度:🌟🌟🌟🌟🌟🌟
|
||||
- 预计学时:
|
||||
|
||||
## 课程资源
|
||||
- 课程网站:
|
||||
- 课程视频:
|
||||
- 课程教材:
|
||||
- 课程作业:
|
||||
|
||||
## 资源汇总
|
||||
我在学习这门课中用到的所有资源和作业实现都汇总在[这个Github仓库]中。
|
||||
|
|
@ -0,0 +1,16 @@
|
|||
# STATS214 / CS229M: Machine Learning Theory
|
||||
## 课程简介
|
||||
- 所属大学:Stanford
|
||||
- 先修要求:Machine Learning, Deep Learning, Statistics
|
||||
- 编程语言:
|
||||
- 课程难度:🌟🌟🌟🌟🌟🌟
|
||||
- 预计学时:
|
||||
|
||||
## 课程资源
|
||||
- 课程网站:
|
||||
- 课程视频:
|
||||
- 课程教材:
|
||||
- 课程作业:
|
||||
|
||||
## 资源汇总
|
||||
我在学习这门课中用到的所有资源和作业实现都汇总在[这个Github仓库]中。
|
||||
|
|
@ -0,0 +1,17 @@
|
|||
|
||||
# CS 324 Large Language Models
|
||||
## 课程简介
|
||||
- 所属大学:Stanford
|
||||
- 先修要求:Machine Learning, Natural Language Processing, Deep Learning
|
||||
- 编程语言:
|
||||
- 课程难度:🌟🌟🌟🌟🌟
|
||||
- 预计学时:
|
||||
|
||||
## 课程资源
|
||||
- 课程网站:
|
||||
- 课程视频:
|
||||
- 课程教材:
|
||||
- 课程作业:
|
||||
|
||||
## 资源汇总
|
||||
我在学习这门课中用到的所有资源和作业实现都汇总在[这个Github仓库]中。
|
||||
|
|
@ -0,0 +1,15 @@
|
|||
## 课程简介
|
||||
- 所属大学:Stanford
|
||||
- 先修要求:
|
||||
- 编程语言:
|
||||
- 课程难度:🌟🌟🌟🌟🌟🌟🌟
|
||||
- 预计学时:
|
||||
|
||||
## 课程资源
|
||||
- 课程网站:
|
||||
- 课程视频:
|
||||
- 课程教材:
|
||||
- 课程作业:
|
||||
|
||||
## 资源汇总
|
||||
我在学习这门课中用到的所有资源和作业实现都汇总在[这个Github仓库]中。
|
||||
|
|
@ -0,0 +1,16 @@
|
|||
# STA 4273 Winter 2021: Minimizing Expectations
|
||||
## 课程简介
|
||||
- 所属大学:U Toronto
|
||||
- 先修要求:
|
||||
- 编程语言:
|
||||
- 课程难度:🌟🌟🌟🌟🌟🌟🌟
|
||||
- 预计学时:
|
||||
|
||||
## 课程资源
|
||||
- 课程网站:
|
||||
- 课程视频:
|
||||
- 课程教材:
|
||||
- 课程作业:
|
||||
|
||||
## 资源汇总
|
||||
我在学习这门课中用到的所有资源和作业实现都汇总在[这个Github仓库]中。
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
## 必读教材
|
||||
- PRML: Pattern Recognition and Machine Learning. Christopher Bishop
|
||||
- AoS: All of Statistics. Larry Wasserman
|
||||
|
||||
## 字典
|
||||
- MLAPP: Machine Learning: A Probabilistic Perspective. Kevin Murphy
|
||||
- Convex Optimization. Stephen Boyd and Lieven Vandenberghe
|
||||
|
||||
## 进阶书籍
|
||||
- W&J: Graphical Models, Exponential Families, and Variational Inference. Martin Wainwright and Michael Jordan
|
||||
- Theory of Point Estimation. E. L. Lehmann and George Casella
|
||||
|
|
@ -88,4 +88,12 @@ nav:
|
|||
- 'Stanford CS224n: Natural Language Processing': '深度学习/CS224n.md'
|
||||
- 'Stanford CS224w: Machine Learning with Graphs': '深度学习/CS224w.md'
|
||||
- 'UCB CS285: Deep Reinforcement Learning': '深度学习/CS285.md'
|
||||
- 机器学习进阶:
|
||||
- '进阶路线图': '机器学习进阶/roadmap.md'
|
||||
- 'CMU 10-708: Probabilistic Graphical Models': '机器学习进阶/CMU10-708.md'
|
||||
- 'Columbia STAT 8201: Deep Generative Models': '机器学习进阶/STAT8201.md'
|
||||
- 'U Toronto STA 4273 Winter 2021: Minimizing Expectations': '机器学习进阶/STA4273.md'
|
||||
- 'U Toronto CSC 2547 Fall 2019: Learning to Search': '机器学习进阶/CSC2547.md'
|
||||
- 'Stanford CS 324 Large Language Models': '机器学习进阶/CS324.md'
|
||||
- 'Stanford STATS214 / CS229M: Machine Learning Theory': '机器学习进阶/CS229M.md'
|
||||
- 后记: '后记.md'
|
||||
|
|
|
|||
Loading…
Reference in New Issue