csdiy.wiki
简体中文
English
Initializing search
cs-self-learning
csdiy.wiki
cs-self-learning
Foreword
How To Use The Book
Guideline
Productivity Toolkit
Productivity Toolkit
GFW
Vim
Emacs
Git
GitHub
GNU Make
CMake
LaTeX
Docker
Scoop
Notes Workflow
Useful Tools
Thesis Writing
Information Retrieval
Book Recommendation
Fundamental Mathematics
Fundamental Mathematics
MIT18.01/18.02: Calculus
MIT18.06: Linear Algebra
MIT6.050J: Information theory and Entropy
Advanced Mathematics
Advanced Mathematics
UCB CS70: discrete Math and probability theory
UCB CS126: probability theory
MIT 6.042J: Mathematics for Computer Science
MIT18.330: Introduction to numerical analysis
Standford EE364A: Convex Optimization
The Information Theory, Pattern Recognition, and Neural Networks
Fundamental Programming
Fundamental Programming
MIT-Missing-Semester
Sysadmin DeCal
Python Language
Python Language
UCB CS61A: Structure and Interpretation of Computer Programs
CS50P: CS50's Introduction to Programming with Python
MIT6.100L: Introduction to CS and Programming using Python
C Language
C Language
Harvard CS50: This is CS50x
Duke University: Introductory C Programming Specialization
C++ Language
C++ Language
AmirKabir University of Technology AP1400-2: Advanced Programming
Stanford CS106L: Standard C++ Programming
Stanford CS106B/X
Java Language
Java Language
MIT 6.092: Introduction To Programming In Java
Rust Language
Rust Language
Stanford CS110L: Safety in Systems Programming
KAIST CS220: Programming Principles
KAIST CS431: Concurrent Programming
Functional Programming
Functional Programming
Cornell CS3110: OCaml Programming Correct + Efficient + Beautiful
Haskell MOOC
Fundamental Electronics
Fundamental Electronics
EE16A&B: Designing Information Devices and Systems I&II
UCB EE120 : Signal and Systems
MIT 6.007 Signals and Systems
Data Structures and Algorithms
Data Structures and Algorithms
UCB CS61B: Data Structures and Algorithms
Coursera: Algorithms I & II
MIT 6.006: Introduction to Algorithms
MIT 6.046: Design and Analysis of Algorithms
UCB CS170: Efficient Algorithms and Intractable Problems
Software Engineering
Software Engineering
MIT 6.031: Software Construction
UCB CS169: software engineering
CMU 17-803: Empirical Methods
Computer Systems Principles
Computer Systems Principles
CMU 15-213: CSAPP
Stanford CS110: Principles of Computer Systems
Computer Architecture
Computer Architecture
Coursera: Nand2Tetris
UCB CS61C: Great Ideas in Computer Architecture
ETHz: Digital Design and Computer Architecture
ETHz: Computer Architecture
Operating Systems
Operating Systems
MIT 6.S081: Operating System Engineering
UCB CS162: Operating System
NJU OS: Operating System Design and Implementation
HIT OS: Operating System
Distributed Systems
Distributed Systems
CMU 15-418/Stanford CS149: Parallel Computing
MIT 6.824: Distributed System
Computer Security
Computer Security
UCB CS161: Computer Security
MIT 6.1600: Foundations of Computer Security
MIT 6.858: Computer System Security
ASU CSE365: Introduction to Cybersecurity
ASU CSE466: Computer Systems Security
SU SEED Labs
Computer Networking
Computer Networking
UCB CS168: Introduction to the Internet: Architecture and Protocols
Stanford CS144: Computer Network
USTC Computer Networking:A Top-Down Approach
Computer Networking: A Top-Down Approach
Database Systems
Database Systems
UCB CS186: Introduction to Database System
CMU 15-445: Database Systems
Caltech CS122: Database System Implementation
Stanford CS346: Database System Implementation
CMU 15-799: Special Topics in Database Systems
Compilers
Compilers
PKU 编译原理实践
Stanford CS143: Compilers
NJU 编译原理
KAIST CS420: Compiler Design
USTC 编译原理与技术
SJTU 编译原理
Programming Language Design and Analysis
Programming Language Design and Analysis
Stanford CS242: Programming Languages
NJU Software Analysis
PKU Software Analysis
Cambridge: Semantics of Programming Languages
Computer Graphics
Computer Graphics
GAMES101
GAMES202
GAMES103
Stanford CS148
CMU 15-462
USTC CG
Web Development
Web Development
MIT web development course
Stanford CS142: Web Applications
University of Helsinki: Full Stack open 2022
CS571 Building UI (React & React Native)
Data Science
Data Science
UCB Data100: Principles and Techniques of Data Science
Artificial Intelligence
Artificial Intelligence
Neural Networks: Zero to Hero
Harvard CS50's Introduction to AI with Python
UCB CS188: Introduction to Artificial Intelligence
Machine Learning
Machine Learning
Coursera: Machine Learning
Stanford CS229: Machine Learning
UCB CS189: Introduction to Machine Learning
Machine Learning Systems
Machine Learning Systems
Intelligent Computing Systems
CMU 10-414/714: Deep Learning Systems
MIT6.5940: TinyML and Efficient Deep Learning Computing
Machine Learning Compilation
Deep Learning
Deep Learning
Coursera: Deep Learning
NTU Machine Learning
UMich EECS 498-007 / 598-005: Deep Learning for Computer Vision
Stanford CS231n: CNN for Visual Recognition
Stanford CS224n: Natural Language Processing
Stanford CS224w: Machine Learning with Graphs
UCB CS285: Deep Reinforcement Learning
Deep Generative Models
Deep Generative Models
Roadmap
MIT 6.S184: Generative AI with Stochastic Differential Equations
Large Language Models
Large Language Models
CMU 11-868: Large Language Model System
CMU 11-667: Large Language Models: Methods and Applications
CMU 11-711: Advanced Natural Language Processing
Advanced Machine Learning
Advanced Machine Learning
Roadmap
CMU 10-708: Probabilistic Graphical Models
Columbia STAT 8201: Deep Generative Models
U Toronto STA 4273 Winter 2021: Minimizing Expectations
Stanford STATS214 / CS229M: Machine Learning Theory
Postscript
404 - Not found
Back to top