# 题目地址
https://leetcode-cn.com/problems/binary-tree-cameras/
## 思路
这道题目其实不是那么好理解的,题目举的示例不是很典型,会误以为摄像头必须要放在中间,其实放哪里都可以只要覆盖了就行。
这道题目难在两点:
1. 需要确定遍历方式
2. 需要状态转移的方程
我们之前做动态规划的时候,只要最难的地方在于确定状态转移方程,至于遍历方式无非就是在数组或者二维数组上。
**本题并不是动态规划,其本质是贪心,但我们要确定状态转移方式,而且要在树上进行推导,所以难度就上来了,一些同学知道这道题目难,但其实说不上难点究竟在哪。**
1. 需要确定遍历方式
首先先确定遍历方式,才能确定转移方程,那么该如何遍历呢?
在安排选择摄像头的位置的时候,**我们要从底向上进行推导,因为尽量让叶子节点的父节点安装摄像头,这样摄像头的数量才是最少的**,这也是本道贪心的原理所在!
如何从低向上推导呢?
就是后序遍历也就是左右中的顺序,这样就可以从下到上进行推导了。
后序遍历代码如下:
```
int traversal(TreeNode* cur) {
// 空节点,该节点有覆盖
if (终止条件) return ;
int left = traversal(cur->left); // 左
int right = traversal(cur->right); // 右
逻辑处理 // 中
return ;
}
```
**注意在以上代码中我们取了左孩子的返回值,右孩子的返回值,即left 和 right, 以后推导中间节点的状态**
2. 需要状态转移的方程
确定了遍历顺序,再看看这个状态应该如何转移,先来看看每个节点可能有几种状态:
可以说有如下三种:
* 该节点无覆盖
* 本节点有摄像头
* 本节点有覆盖
我们分别有三个数字来表示:
* 0:该节点无覆盖
* 1:本节点有摄像头
* 2:本节点有覆盖
大家应该找不出第四个节点的状态了。
**一些同学可能会想有没有第四种状态:本节点无摄像头,其实无摄像头就是 无覆盖 或者 有覆盖的状态,所以一共还是三个状态。**
**那么问题来了,空节点究竟是哪一种状态呢? 空节点表示无覆盖? 表示有摄像头?还是有覆盖呢? **
回归本质,为了让摄像头数量最少,我们要尽量让叶子节点的父节点安装摄像头,这样才能摄像头的数量最少。
那么空节点不能是无覆盖的状态,这样叶子节点就可以放摄像头了,空节点也不能是有摄像头的状态,这样叶子节点的父节点就没有必要放摄像头了,而是可以把摄像头放在叶子节点的爷爷节点上。
**所以空节点的状态只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了**
接下来就是递推关系。
那么递归的终止条件应该是遇到了空节点,此时应该返回2(有覆盖),原因上面已经解释过了。
代码如下:
```
// 空节点,该节点有覆盖
if (cur == NULL) return 2;
```
递归的函数,以及终止条件已经确定了,再来看单层逻辑处理。
主要有如下四类情况:
1. 情况1:左右节点都有覆盖
左孩子有覆盖,右孩子有覆盖,那么此时中间节点应该就是无覆盖的状态了。
如图:
代码如下:
```
// 左右节点都有覆盖
if (left == 2 && right == 2) return 0;
```
2. 情况2:左右节点至少有一个无覆盖的情况
如果是以下情况,则中间节点(父节点)应该放摄像头:
left == 0 && right == 0 左右节点无覆盖
left == 1 && right == 0 左节点有摄像头,右节点无覆盖
left == 0 && right == 1 左节点有无覆盖,右节点摄像头
left == 0 && right == 2 左节点无覆盖,右节点覆盖
left == 2 && right == 0 左节点覆盖,右节点无覆盖
这个不难理解,毕竟有一个孩子没有覆盖,父节点就应该放摄像头。
此时摄像头的数量要加一,并且return 1,代表中间节点放摄像头。
代码如下:
```
if (left == 0 || right == 0) {
result++;
return 1;
}
```
3. 情况3:左右节点至少有一个有摄像头
如果是以下情况,其实就是 左右孩子节点有一个有摄像头了,那么其父节点就应该是2(覆盖的状态)
left == 1 && right == 2 左节点有摄像头,右节点有覆盖
left == 2 && right == 1 左节点有覆盖,右节点有摄像头
left == 1 && right == 1 左右节点都有摄像头
代码如下:
```
if (left == 1 || right == 1) return 2;
```
**从这个代码中,可以看出,如果left == 1, right == 0 怎么办?其实这种条件在情况2中已经判断过了**,如图:
这种情况也是大多数同学容易迷惑的情况。
4. 情况4:头结点没有覆盖
以上都处理完了,递归结束之后,可能头结点 还有一个无覆盖的情况,如图:
所以递归结束之后,还要判断根节点,如果没有覆盖,result++,代码如下:
```
int minCameraCover(TreeNode* root) {
result = 0;
if (traversal(root) == 0) { // root 无覆盖
result++;
}
return result;
}
```
以上四种情况我们分析完了,代码也差不多了,整体代码如下:
(**以下我的代码是可以精简的,但是我是为了把情况说清楚,特别把每种情况列出来,因为精简之后的代码读者不好理解。**)
## C++代码
```
class Solution {
private:
int result;
int traversal(TreeNode* cur) {
// 空节点,该节点有覆盖
if (cur == NULL) return 2;
int left = traversal(cur->left); // 左
int right = traversal(cur->right); // 右
// 情况1
// 左右节点都有覆盖
if (left == 2 && right == 2) return 0;
// 情况2
// left == 0 && right == 0 左右节点无覆盖
// left == 1 && right == 0 左节点有摄像头,右节点无覆盖
// left == 0 && right == 1 左节点有无覆盖,右节点摄像头
// left == 0 && right == 2 左节点无覆盖,右节点覆盖
// left == 2 && right == 0 左节点覆盖,右节点无覆盖
if (left == 0 || right == 0) {
result++;
return 1;
}
// 情况3
// left == 1 && right == 2 左节点有摄像头,右节点有覆盖
// left == 2 && right == 1 左节点有覆盖,右节点有摄像头
// left == 1 && right == 1 左右节点都有摄像头
// 其他情况前段代码均已覆盖
if (left == 1 || right == 1) return 2;
// 以上代码我没有使用else,主要是为了把各个分支条件展现出来,这样代码有助于读者理解
// 这个 return -1 逻辑不会走到这里。
return -1;
}
public:
int minCameraCover(TreeNode* root) {
result = 0;
// 情况4
if (traversal(root) == 0) { // root 无覆盖
result++;
}
return result;
}
};
```
> 更多算法干货文章持续更新,可以微信搜索「代码随想录」第一时间围观,关注后,回复「Java」「C++」 「python」「简历模板」「数据结构与算法」等等,就可以获得我多年整理的学习资料。