欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

## 416. 分割等和子集 [力扣题目链接](https://leetcode-cn.com/problems/partition-equal-subset-sum/) 题目难易:中等 给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。 注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200 示例 1: 输入: [1, 5, 11, 5] 输出: true 解释: 数组可以分割成 [1, 5, 5] 和 [11]. 示例 2: 输入: [1, 2, 3, 5] 输出: false 解释: 数组不能分割成两个元素和相等的子集. 提示: * 1 <= nums.length <= 200 * 1 <= nums[i] <= 100 ## 思路 这道题目初步看,是如下两题几乎是一样的,大家可以用回溯法,解决如下两题 * 698.划分为k个相等的子集 * 473.火柴拼正方形 这道题目是要找是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。 那么只要找到集合里能够出现 sum / 2 的子集总和,就算是可以分割成两个相同元素和子集了。 本题是可以用回溯暴力搜索出所有答案的,但最后超时了,也不想再优化了,放弃回溯,直接上01背包吧。 如果对01背包不够了解,建议仔细看完如下两篇: * [动态规划:关于01背包问题,你该了解这些!](https://programmercarl.com/背包理论基础01背包-1.html) * [动态规划:关于01背包问题,你该了解这些!(滚动数组)](https://programmercarl.com/背包理论基础01背包-2.html) ## 01背包问题 背包问题,大家都知道,有N件物品和一个最多能被重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。 **背包问题有多种背包方式,常见的有:01背包、完全背包、多重背包、分组背包和混合背包等等。** 要注意题目描述中商品是不是可以重复放入。 **即一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包,写法还是不一样的。** **要明确本题中我们要使用的是01背包,因为元素我们只能用一次。** 回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。 那么来一一对应一下本题,看看背包问题如果来解决。 **只有确定了如下四点,才能把01背包问题套到本题上来。** * 背包的体积为sum / 2 * 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值 * 背包如何正好装满,说明找到了总和为 sum / 2 的子集。 * 背包中每一个元素是不可重复放入。 以上分析完,我们就可以套用01背包,来解决这个问题了。 动规五部曲分析如下: 1. 确定dp数组以及下标的含义 01背包中,dp[i] 表示: 容量为j的背包,所背的物品价值可以最大为dp[j]。 **套到本题,dp[i]表示 背包总容量是i,最大可以凑成i的子集总和为dp[i]**。 2. 确定递推公式 01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); 本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。 所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); 3. dp数组如何初始化 在01背包,一维dp如何初始化,已经讲过, 从dp[j]的定义来看,首先dp[0]一定是0。 如果如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。 **这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了**。 本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。 代码如下: ```CPP // 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200 // 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了 vector dp(10001, 0); ``` 4. 确定遍历顺序 在[动态规划:关于01背包问题,你该了解这些!(滚动数组)](https://programmercarl.com/背包理论基础01背包-2.html)中就已经说明:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒叙遍历! 代码如下: ```CPP // 开始 01背包 for(int i = 0; i < nums.size(); i++) { for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历 dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); } } ``` 5. 举例推导dp数组 dp[i]的数值一定是小于等于i的。 **如果dp[i] == i 说明,集合中的子集总和正好可以凑成总和i,理解这一点很重要。** 用例1,输入[1,5,11,5] 为例,如图: ![416.分割等和子集2](https://img-blog.csdnimg.cn/20210110104240545.png) 最后dp[11] == 11,说明可以将这个数组分割成两个子集,使得两个子集的元素和相等。 综上分析完毕,C++代码如下: ```CPP class Solution { public: bool canPartition(vector& nums) { int sum = 0; // dp[i]中的i表示背包内总和 // 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200 // 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了 vector dp(10001, 0); for (int i = 0; i < nums.size(); i++) { sum += nums[i]; } if (sum % 2 == 1) return false; int target = sum / 2; // 开始 01背包 for(int i = 0; i < nums.size(); i++) { for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历 dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); } } // 集合中的元素正好可以凑成总和target if (dp[target] == target) return true; return false; } }; ``` * 时间复杂度:O(n^2) * 空间复杂度:O(n),虽然dp数组大小为一个常数,但是大常数 ## 总结 这道题目就是一道01背包应用类的题目,需要我们拆解题目,然后套入01背包的场景。 01背包相对于本题,主要要理解,题目中物品是nums[i],重量是nums[i],价值也是nums[i],背包体积是sum/2。 看代码的话,就可以发现,基本就是按照01背包的写法来的。 ## 其他语言版本 Java: ```Java class Solution { public boolean canPartition(int[] nums) { if(nums == null || nums.length == 0) return false; int n = nums.length; int sum = 0; for(int num : nums){ sum += num; } //总和为奇数,不能平分 if(sum % 2 != 0) return false; int target = sum / 2; int[] dp = new int[target + 1]; for(int i = 0; i < n; i++){ for(int j = target; j >= nums[i]; j--){ //物品 i 的重量是 nums[i],其价值也是 nums[i] dp[j] = Math.max(dp[j], dp[j-nums[i]] + nums[i]); } } return dp[target] == target; } } ``` Python: ```python class Solution: def canPartition(self, nums: List[int]) -> bool: taraget = sum(nums) if taraget % 2 == 1: return False taraget //= 2 dp = [0] * 10001 for i in range(len(nums)): for j in range(taraget, nums[i] - 1, -1): dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]) return taraget == dp[taraget] ``` Go: ``` func canPartition(nums []int) bool { /** 动态五部曲: 1.确定dp数组和下标含义 2.确定递推公式 3.dp数组初始化 4.dp遍历顺序 5.打印 **/ //确定和 var sum int for _,v:=range nums{ sum+=v } if sum%2!=0{ //如果和为奇数,则不可能分成两个相等的数组 return false } sum/=2 //确定dp数组和下标含义 var dp [][]bool //dp[i][j] 表示: 前i个石头是否总和不大于J //初始化数组 dp=make([][]bool,len(nums)+1) for i,_:=range dp{ dp[i]=make([]bool,sum+1) dp[i][0]=true } for i:=1;i<=len(nums);i++{ for j:=1;j<=sum;j++{//j是固定总量 if j>=nums[i-1]{//如果容量够用则可放入背包 dp[i][j]=dp[i-1][j]||dp[i-1][j-nums[i-1]] }else{//如果容量不够用则不拿,维持前一个状态 dp[i][j]=dp[i-1][j] } } } return dp[len(nums)][sum] } ``` javaScript: ```js var canPartition = function(nums) { const sum = (nums.reduce((p, v) => p + v)); if (sum & 1) return false; const dp = Array(sum / 2 + 1).fill(0); for(let i = 0; i < nums.length; i++) { for(let j = sum / 2; j >= nums[i]; j--) { dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]); if (dp[j] === sum / 2) { return true; } } } return dp[sum / 2] === sum / 2; }; ``` ----------------------- * 作者微信:[程序员Carl](https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw) * B站视频:[代码随想录](https://space.bilibili.com/525438321) * 知识星球:[代码随想录](https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ)