参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
## 1. 两数之和
[力扣题目链接](https://leetcode.cn/problems/two-sum/)
给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。
**示例:**
给定 nums = [2, 7, 11, 15], target = 9
因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]
## 思路
建议看一下我录的这期视频:[梦开始的地方,Leetcode:1.两数之和](https://www.bilibili.com/video/BV1aT41177mK),结合本题解来学习,事半功倍。
很明显暴力的解法是两层for循环查找,时间复杂度是O(n^2)。
建议大家做这道题目之前,先做一下这两道
* [242. 有效的字母异位词](https://www.programmercarl.com/0242.有效的字母异位词.html)
* [349. 两个数组的交集](https://www.programmercarl.com/0349.两个数组的交集.html)
[242. 有效的字母异位词](https://www.programmercarl.com/0242.有效的字母异位词.html) 这道题目是用数组作为哈希表来解决哈希问题,[349. 两个数组的交集](https://www.programmercarl.com/0349.两个数组的交集.html)这道题目是通过set作为哈希表来解决哈希问题。
首先我在强调一下 **什么时候使用哈希法**,当我们需要查询一个元素是否出现过,或者一个元素是否在集合里的时候,就要第一时间想到哈希法。
本题呢,我就需要一个集合来存放我们遍历过的元素,然后在遍历数组的时候去询问这个集合,某元素是否遍历过,也就是 是否出现在这个集合。
那么我们就应该想到使用哈希法了。
因为本地,我们不仅要知道元素有没有遍历过,还有知道这个元素对应的下标,**需要使用 key value结构来存放,key来存元素,value来存下标,那么使用map正合适**。
再来看一下使用数组和set来做哈希法的局限。
* 数组的大小是受限制的,而且如果元素很少,而哈希值太大会造成内存空间的浪费。
* set是一个集合,里面放的元素只能是一个key,而两数之和这道题目,不仅要判断y是否存在而且还要记录y的下标位置,因为要返回x 和 y的下标。所以set 也不能用。
此时就要选择另一种数据结构:map ,map是一种key value的存储结构,可以用key保存数值,用value在保存数值所在的下标。
C++中map,有三种类型:
|映射 |底层实现 | 是否有序 |数值是否可以重复 | 能否更改数值|查询效率 |增删效率|
|---|---| --- |---| --- | --- | ---|
|std::map |红黑树 |key有序 |key不可重复 |key不可修改 | O(log n)|O(log n) |
|std::multimap | 红黑树|key有序 | key可重复 | key不可修改|O(log n) |O(log n) |
|std::unordered_map |哈希表 | key无序 |key不可重复 |key不可修改 |O(1) | O(1)|
std::unordered_map 底层实现为哈希表,std::map 和std::multimap 的底层实现是红黑树。
同理,std::map 和std::multimap 的key也是有序的(这个问题也经常作为面试题,考察对语言容器底层的理解)。 更多哈希表的理论知识请看[关于哈希表,你该了解这些!](https://www.programmercarl.com/哈希表理论基础.html)。
**这道题目中并不需要key有序,选择std::unordered_map 效率更高!** 使用其他语言的录友注意了解一下自己所用语言的数据结构就行。
接下来需要明确两点:
* **map用来做什么**
* **map中key和value分别表示什么**
map目的用来存放我们访问过的元素,因为遍历数组的时候,需要记录我们之前遍历过哪些元素和对应的下标,这样才能找到与当前元素相匹配的(也就是相加等于target)
接下来是map中key和value分别表示什么。
这道题 我们需要 给出一个元素,判断这个元素是否出现过,如果出现过,返回这个元素的下标。
那么判断元素是否出现,这个元素就要作为key,所以数组中的元素作为key,有key对应的就是value,value用来存下标。
所以 map中的存储结构为 {key:数据元素,value:数组元素对应的下标}。
在遍历数组的时候,只需要向map去查询是否有和目前遍历元素匹配的数值,如果有,就找到的匹配对,如果没有,就把目前遍历的元素放进map中,因为map存放的就是我们访问过的元素。
过程如下:


C++代码:
```CPP
class Solution {
public:
vector twoSum(vector& nums, int target) {
std::unordered_map map;
for(int i = 0; i < nums.size(); i++) {
// 遍历当前元素,并在map中寻找是否有匹配的key
auto iter = map.find(target - nums[i]);
if(iter != map.end()) {
return {iter->second, i};
}
// 如果没找到匹配对,就把访问过的元素和下标加入到map中
map.insert(pair(nums[i], i));
}
return {};
}
};
```
* 时间复杂度: O(n)
* 空间复杂度: O(n)
## 总结
本题其实有四个重点:
* 为什么会想到用哈希表
* 哈希表为什么用map
* 本题map是用来存什么的
* map中的key和value用来存什么的
把这四点想清楚了,本题才算是理解透彻了。
很多录友把这道题目 通过了,但都没想清楚map是用来做什么的,以至于对代码的理解其实是 一知半解的。
## 其他语言版本
Java:
```java
public int[] twoSum(int[] nums, int target) {
int[] res = new int[2];
if(nums == null || nums.length == 0){
return res;
}
Map map = new HashMap<>();
for(int i = 0; i < nums.length; i++){
int temp = target - nums[i]; // 遍历当前元素,并在map中寻找是否有匹配的key
if(map.containsKey(temp)){
res[1] = i;
res[0] = map.get(temp);
break;
}
map.put(nums[i], i); // 如果没找到匹配对,就把访问过的元素和下标加入到map中
}
return res;
}
```
Python:
```python
class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
records = dict()
for index, value in enumerate(nums):
if target - value in records: # 遍历当前元素,并在map中寻找是否有匹配的key
return [records[target- value], index]
records[value] = index # 遍历当前元素,并在map中寻找是否有匹配的key
return []
```
Go:
```go
// 暴力解法
func twoSum(nums []int, target int) []int {
for k1, _ := range nums {
for k2 := k1 + 1; k2 < len(nums); k2++ {
if target == nums[k1] + nums[k2] {
return []int{k1, k2}
}
}
}
return []int{}
}
```
```go
// 使用map方式解题,降低时间复杂度
func twoSum(nums []int, target int) []int {
m := make(map[int]int)
for index, val := range nums {
if preIndex, ok := m[target-val]; ok {
return []int{preIndex, index}
} else {
m[val] = index
}
}
return []int{}
}
```
Rust
```rust
use std::collections::HashMap;
impl Solution {
pub fn two_sum(nums: Vec, target: i32) -> Vec {
let mut map = HashMap::with_capacity(nums.len());
for i in 0..nums.len() {
if let Some(k) = map.get(&(target - nums[i])) {
if *k != i {
return vec![*k as i32, i as i32];
}
}
map.insert(nums[i], i);
}
panic!("not found")
}
}
```
Javascript
```javascript
var twoSum = function (nums, target) {
let hash = {};
for (let i = 0; i < nums.length; i++) { // 遍历当前元素,并在map中寻找是否有匹配的key
if (hash[target - nums[i]] !== undefined) {
return [i, hash[target - nums[i]]];
}
hash[nums[i]] = i; // 如果没找到匹配对,就把访问过的元素和下标加入到map中
}
return [];
};
```
TypeScript:
```typescript
function twoSum(nums: number[], target: number): number[] {
let helperMap: Map = new Map();
let index: number | undefined;
let resArr: number[] = [];
for (let i = 0, length = nums.length; i < length; i++) {
index = helperMap.get(target - nums[i]);
if (index !== undefined) {
resArr = [i, index];
}
helperMap.set(nums[i], i);
}
return resArr;
};
```
php
```php
function twoSum(array $nums, int $target): array
{
$map = [];
foreach($nums as $i => $num) {
if (isset($map[$target - $num])) {
return [
$i,
$map[$target - $num]
];
} else {
$map[$num] = $i;
}
}
return [];
}
```
Swift:
```swift
func twoSum(_ nums: [Int], _ target: Int) -> [Int] {
// 值: 下标
var map = [Int: Int]()
for (i, e) in nums.enumerated() {
if let v = map[target - e] {
return [v, i]
} else {
map[e] = i
}
}
return []
}
```
Scala:
```scala
object Solution {
// 导入包
import scala.collection.mutable
def twoSum(nums: Array[Int], target: Int): Array[Int] = {
// key存储值,value存储下标
val map = new mutable.HashMap[Int, Int]()
for (i <- nums.indices) {
val tmp = target - nums(i) // 计算差值
// 如果这个差值存在于map,则说明找到了结果
if (map.contains(tmp)) {
return Array(map.get(tmp).get, i)
}
// 如果不包含把当前值与其下标放到map
map.put(nums(i), i)
}
// 如果没有找到直接返回一个空的数组,return关键字可以省略
new Array[Int](2)
}
}
```
C#:
```csharp
public class Solution {
public int[] TwoSum(int[] nums, int target) {
Dictionary dic= new Dictionary();
for(int i=0;i twoSum(List nums, int target) {
var tmp = [];
for (var i = 0; i < nums.length; i++) {
var rest = target - nums[i];
if(tmp.contains(rest)){
return [tmp.indexOf(rest), i];
}
tmp.add(nums[i]);
}
return [0 , 0];
}
```
C:
```c
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
// leetcode 支持 ut_hash 函式庫
typedef struct {
int key;
int value;
UT_hash_handle hh; // make this structure hashable
} map;
map* hashMap = NULL;
void hashMapAdd(int key, int value){
map* s;
// key already in the hash?
HASH_FIND_INT(hashMap, &key, s);
if(s == NULL){
s = (map*)malloc(sizeof(map));
s -> key = key;
HASH_ADD_INT(hashMap, key, s);
}
s -> value = value;
}
map* hashMapFind(int key){
map* s;
// *s: output pointer
HASH_FIND_INT(hashMap, &key, s);
return s;
}
void hashMapCleanup(){
map* cur, *tmp;
HASH_ITER(hh, hashMap, cur, tmp){
HASH_DEL(hashMap, cur);
free(cur);
}
}
void hashPrint(){
map* s;
for(s = hashMap; s != NULL; s=(map*)(s -> hh.next)){
printf("key %d, value %d\n", s -> key, s -> value);
}
}
int* twoSum(int* nums, int numsSize, int target, int* returnSize){
int i, *ans;
// hash find result
map* hashMapRes;
hashMap = NULL;
ans = malloc(sizeof(int) * 2);
for(i = 0; i < numsSize; i++){
// key 代表 nums[i] 的值,value 代表所在 index;
hashMapAdd(nums[i], i);
}
hashPrint();
for(i = 0; i < numsSize; i++){
hashMapRes = hashMapFind(target - nums[i]);
if(hashMapRes && hashMapRes -> value != i){
ans[0] = i;
ans[1] = hashMapRes -> value ;
*returnSize = 2;
return ans;
}
}
hashMapCleanup();
return NULL;
}
```