欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

## 337.打家劫舍 III 题目链接:https://leetcode-cn.com/problems/house-robber-iii/ 在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。 计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。 ![337.打家劫舍III](https://img-blog.csdnimg.cn/20210223173849619.png) ## 思路 这道题目和 [198.打家劫舍](https://mp.weixin.qq.com/s/UZ31WdLEEFmBegdgLkJ8Dw),[213.打家劫舍II](https://mp.weixin.qq.com/s/kKPx4HpH3RArbRcxAVHbeQ)也是如出一辙,只不过这个换成了树。 如果对树的遍历不够熟悉的话,那本题就有难度了。 对于树的话,首先就要想到遍历方式,前中后序(深度优先搜索)还是层序遍历(广度优先搜索)。 **本题一定是要后序遍历,因为通过递归函数的返回值来做下一步计算**。 与198.打家劫舍,213.打家劫舍II一样,关键是要讨论当前节点抢还是不抢。 如果抢了当前节点,两个孩子就不是动,如果没抢当前节点,就可以考虑抢左右孩子(**注意这里说的是“考虑”**) ### 暴力递归 代码如下: ```C++ class Solution { public: int rob(TreeNode* root) { if (root == NULL) return 0; if (root->left == NULL && root->right == NULL) return root->val; // 偷父节点 int val1 = root->val; if (root->left) val1 += rob(root->left->left) + rob(root->left->right); // 跳过root->left,相当于不考虑左孩子了 if (root->right) val1 += rob(root->right->left) + rob(root->right->right); // 跳过root->right,相当于不考虑右孩子了 // 不偷父节点 int val2 = rob(root->left) + rob(root->right); // 考虑root的左右孩子 return max(val1, val2); } }; ``` * 时间复杂度:O(n^2) 这个时间复杂度不太标准,也不容易准确化,例如越往下的节点重复计算次数就越多 * 空间复杂度:O(logn) 算上递推系统栈的空间 当然以上代码超时了,这个递归的过程中其实是有重复计算了。 我们计算了root的四个孙子(左右孩子的孩子)为头结点的子树的情况,又计算了root的左右孩子为头结点的子树的情况,计算左右孩子的时候其实又把孙子计算了一遍。 ### 记忆化递推 所以可以使用一个map把计算过的结果保存一下,这样如果计算过孙子了,那么计算孩子的时候可以复用孙子节点的结果。 代码如下: ```C++ class Solution { public: unordered_map umap; // 记录计算过的结果 int rob(TreeNode* root) { if (root == NULL) return 0; if (root->left == NULL && root->right == NULL) return root->val; if (umap[root]) return umap[root]; // 如果umap里已经有记录则直接返回 // 偷父节点 int val1 = root->val; if (root->left) val1 += rob(root->left->left) + rob(root->left->right); // 跳过root->left if (root->right) val1 += rob(root->right->left) + rob(root->right->right); // 跳过root->right // 不偷父节点 int val2 = rob(root->left) + rob(root->right); // 考虑root的左右孩子 umap[root] = max(val1, val2); // umap记录一下结果 return max(val1, val2); } }; ``` * 时间复杂度:O(n) * 空间复杂度:O(logn) 算上递推系统栈的空间 ### 动态规划 在上面两种方法,其实对一个节点 投与不投得到的最大金钱都没有做记录,而是需要实时计算。 而动态规划其实就是使用状态转移容器来记录状态的变化,这里可以使用一个长度为2的数组,记录当前节点偷与不偷所得到的的最大金钱。 **这道题目算是树形dp的入门题目,因为是在树上进行状态转移,我们在讲解二叉树的时候说过递归三部曲,那么下面我以递归三部曲为框架,其中融合动规五部曲的内容来进行讲解**。 1. 确定递归函数的参数和返回值 这里我们要求一个节点 偷与不偷的两个状态所得到的金钱,那么返回值就是一个长度为2的数组。 参数为当前节点,代码如下: ```C++ vector robTree(TreeNode* cur) { ``` 其实这里的返回数组就是dp数组。 所以dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。 **所以本题dp数组就是一个长度为2的数组!** 那么有同学可能疑惑,长度为2的数组怎么标记树中每个节点的状态呢? **别忘了在递归的过程中,系统栈会保存每一层递归的参数**。 如果还不理解的话,就接着往下看,看到代码就理解了哈。 2. 确定终止条件 在遍历的过程中,如果遇到空间点的话,很明显,无论偷还是不偷都是0,所以就返回 ``` if (cur == NULL) return vector{0, 0}; ``` 这也相当于dp数组的初始化 3. 确定遍历顺序 首先明确的是使用后序遍历。 因为通过递归函数的返回值来做下一步计算。 通过递归左节点,得到左节点偷与不偷的金钱。 通过递归右节点,得到右节点偷与不偷的金钱。 代码如下: ```C++ // 下标0:不偷,下标1:偷 vector left = robTree(cur->left); // 左 vector right = robTree(cur->right); // 右 // 中 ``` 4. 确定单层递归的逻辑 如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (**如果对下标含义不理解就在回顾一下dp数组的含义**) 如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]); 最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱} 代码如下: ```C++ vector left = robTree(cur->left); // 左 vector right = robTree(cur->right); // 右 // 偷cur int val1 = cur->val + left[0] + right[0]; // 不偷cur int val2 = max(left[0], left[1]) + max(right[0], right[1]); return {val2, val1}; ``` 5. 举例推导dp数组 以示例1为例,dp数组状态如下:(**注意用后序遍历的方式推导**) ![337.打家劫舍III](https://img-blog.csdnimg.cn/20210129181331613.jpg) **最后头结点就是 取下标0 和 下标1的最大值就是偷得的最大金钱**。 递归三部曲与动规五部曲分析完毕,C++代码如下: ```C++ class Solution { public: int rob(TreeNode* root) { vector result = robTree(root); return max(result[0], result[1]); } // 长度为2的数组,0:不偷,1:偷 vector robTree(TreeNode* cur) { if (cur == NULL) return vector{0, 0}; vector left = robTree(cur->left); vector right = robTree(cur->right); // 偷cur int val1 = cur->val + left[0] + right[0]; // 不偷cur int val2 = max(left[0], left[1]) + max(right[0], right[1]); return {val2, val1}; } }; ``` * 时间复杂度:O(n) 每个节点只遍历了一次 * 空间复杂度:O(logn) 算上递推系统栈的空间 ## 总结 这道题是树形DP的入门题目,通过这道题目大家应该也了解了,所谓树形DP就是在树上进行递归公式的推导。 **所以树形DP也没有那么神秘!** 只不过平时我们习惯了在一维数组或者二维数组上推导公式,一下子换成了树,就需要对树的遍历方式足够了解! 大家还记不记得我在讲解贪心专题的时候,讲到这道题目:[贪心算法:我要监控二叉树!](https://mp.weixin.qq.com/s/kCxlLLjWKaE6nifHC3UL2Q),这也是贪心算法在树上的应用。**那我也可以把这个算法起一个名字,叫做树形贪心**,哈哈哈 “树形贪心”词汇从此诞生,来自「代码随想录」 ## 其他语言版本 Java: Python: Go: ----------------------- * 作者微信:[程序员Carl](https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw) * B站视频:[代码随想录](https://space.bilibili.com/525438321) * 知识星球:[代码随想录](https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ)