> 如果想在电脑上看文章的话,可以看这里:https://github.com/youngyangyang04/leetcode-master,已经按照顺序整理了「代码随想录」的所有文章,可以fork到自己仓库里,随时复习。**那么重点来了,来都来了,顺便给一个star吧,哈哈** 在[回溯算法:求组合问题!](https://mp.weixin.qq.com/s/OnBjbLzuipWz_u4QfmgcqQ)中,我们通过回溯搜索法,解决了n个数中求k个数的组合问题。 文中的回溯法是可以剪枝优化的,本篇我们继续来看一下题目77. 组合。 链接:https://leetcode-cn.com/problems/combinations/ **看本篇之前,需要先看[回溯算法:求组合问题!](https://mp.weixin.qq.com/s/OnBjbLzuipWz_u4QfmgcqQ)**。 大家先回忆一下[77. 组合]给出的回溯法的代码: ``` class Solution { private: vector> result; // 存放符合条件结果的集合 vector path; // 用来存放符合条件结果 void backtracking(int n, int k, int startIndex) { if (path.size() == k) { result.push_back(path); return; } for (int i = startIndex; i <= n; i++) { path.push_back(i); // 处理节点 backtracking(n, k, i + 1); // 递归 path.pop_back(); // 回溯,撤销处理的节点 } } public: vector> combine(int n, int k) { result.clear(); // 可以不写 path.clear(); // 可以不写 backtracking(n, k, 1); return result; } }; ``` ## 剪枝优化 我们说过,回溯法虽然是暴力搜索,但也有时候可以有点剪枝优化一下的。 在遍历的过程中有如下代码: ``` for (int i = startIndex; i <= n; i++) { path.push_back(i); backtracking(n, k, i + 1); path.pop_back(); } ``` 这个遍历的范围是可以剪枝优化的,怎么优化呢? 来举一个例子,n = 4,k = 4的话,那么第一层for循环的时候,从元素2开始的遍历都没有意义了。 在第二层for循环,从元素3开始的遍历都没有意义了。 这么说有点抽象,如图所示: 图中每一个节点(图中为矩形),就代表本层的一个for循环,那么每一层的for循环从第二个数开始遍历的话,都没有意义,都是无效遍历。 **所以,可以剪枝的地方就在递归中每一层的for循环所选择的起始位置**。 **如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了**。 注意代码中i,就是for循环里选择的起始位置。 ``` for (int i = startIndex; i <= n; i++) { ``` 接下来看一下优化过程如下: 1. 已经选择的元素个数:path.size(); 2. 还需要的元素个数为: k - path.size(); 3. 在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历 为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。 举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。 从2开始搜索都是合理的,可以是组合[2, 3, 4]。 这里大家想不懂的话,建议也举一个例子,就知道是不是要+1了。 所以优化之后的for循环是: ``` for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) // i为本次搜索的起始位置 ``` 优化后整体代码如下: ``` class Solution { private: vector> result; vector path; void backtracking(int n, int k, int startIndex) { if (path.size() == k) { result.push_back(path); return; } for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) { // 优化的地方 path.push_back(i); // 处理节点 backtracking(n, k, i + 1); path.pop_back(); // 回溯,撤销处理的节点 } } public: vector> combine(int n, int k) { backtracking(n, k, 1); return result; } }; ``` # 总结 本篇我们准对求组合问题的回溯法代码做了剪枝优化,这个优化如果不画图的话,其实不好理解,也不好讲清楚。 所以我依然是把整个回溯过程抽象为一颗树形结构,然后可以直观的看出,剪枝究竟是剪的哪里。 **就酱,学到了就帮Carl转发一下吧,让更多的同学知道这里!**