参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

# 63. 不同路径 II [力扣题目链接](https://leetcode.cn/problems/unique-paths-ii/) 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。 现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径? ![](https://code-thinking-1253855093.file.myqcloud.com/pics/20210111204901338.png) 网格中的障碍物和空位置分别用 1 和 0 来表示。 示例 1: ![](https://code-thinking-1253855093.file.myqcloud.com/pics/20210111204939971.png) * 输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]] * 输出:2 解释: * 3x3 网格的正中间有一个障碍物。 * 从左上角到右下角一共有 2 条不同的路径: 1. 向右 -> 向右 -> 向下 -> 向下 2. 向下 -> 向下 -> 向右 -> 向右 示例 2: ![](https://code-thinking-1253855093.file.myqcloud.com/pics/20210111205857918.png) * 输入:obstacleGrid = [[0,1],[0,0]] * 输出:1 提示: * m == obstacleGrid.length * n == obstacleGrid[i].length * 1 <= m, n <= 100 * obstacleGrid[i][j] 为 0 或 1 ## 算法公开课 **[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[动态规划,这次遇到障碍了| LeetCode:63. 不同路径 II](https://www.bilibili.com/video/BV1Ld4y1k7c6/),相信结合视频再看本篇题解,更有助于大家对本题的理解**。 ## 思路 这道题相对于[62.不同路径](https://programmercarl.com/0062.不同路径.html) 就是有了障碍。 第一次接触这种题目的同学可能会有点懵,这有障碍了,应该怎么算呢? [62.不同路径](https://programmercarl.com/0062.不同路径.html)中我们已经详细分析了没有障碍的情况,有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了。 动规五部曲: 1. 确定dp数组(dp table)以及下标的含义 dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。 2. 确定递推公式 递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。 但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。 所以代码为: ```cpp if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候,再推导dp[i][j] dp[i][j] = dp[i - 1][j] + dp[i][j - 1]; } ``` 3. dp数组如何初始化 在[62.不同路径](https://programmercarl.com/0062.不同路径.html)不同路径中我们给出如下的初始化: ```cpp vector> dp(m, vector(n, 0)); // 初始值为0 for (int i = 0; i < m; i++) dp[i][0] = 1; for (int j = 0; j < n; j++) dp[0][j] = 1; ``` 因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。 但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。 如图: ![63.不同路径II](https://code-thinking-1253855093.file.myqcloud.com/pics/20210104114513928.png) 下标(0, j)的初始化情况同理。 所以本题初始化代码为: ```CPP vector> dp(m, vector(n, 0)); for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1; for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1; ``` **注意代码里for循环的终止条件,一旦遇到obstacleGrid[i][0] == 1的情况就停止dp[i][0]的赋值1的操作,dp[0][j]同理** 4. 确定遍历顺序 从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。 代码如下: ```CPP for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { if (obstacleGrid[i][j] == 1) continue; dp[i][j] = dp[i - 1][j] + dp[i][j - 1]; } } ``` 5. 举例推导dp数组 拿示例1来举例如题: ![63.不同路径II1](https://code-thinking-1253855093.file.myqcloud.com/pics/20210104114548983.png) 对应的dp table 如图: ![63.不同路径II2](https://code-thinking-1253855093.file.myqcloud.com/pics/20210104114610256.png) 如果这个图看不懂,建议再理解一下递归公式,然后照着文章中说的遍历顺序,自己推导一下! 动规五部分分析完毕,对应C++代码如下: ```CPP class Solution { public: int uniquePathsWithObstacles(vector>& obstacleGrid) { int m = obstacleGrid.size(); int n = obstacleGrid[0].size(); if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0 return 0; vector> dp(m, vector(n, 0)); for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1; for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1; for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { if (obstacleGrid[i][j] == 1) continue; dp[i][j] = dp[i - 1][j] + dp[i][j - 1]; } } return dp[m - 1][n - 1]; } }; ``` * 时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度 * 空间复杂度:O(n × m) 同样我们给出空间优化版本: ```CPP class Solution { public: int uniquePathsWithObstacles(vector>& obstacleGrid) { if (obstacleGrid[0][0] == 1) return 0; vector dp(obstacleGrid[0].size()); for (int j = 0; j < dp.size(); ++j) if (obstacleGrid[0][j] == 1) dp[j] = 0; else if (j == 0) dp[j] = 1; else dp[j] = dp[j-1]; for (int i = 1; i < obstacleGrid.size(); ++i) for (int j = 0; j < dp.size(); ++j){ if (obstacleGrid[i][j] == 1) dp[j] = 0; else if (j != 0) dp[j] = dp[j] + dp[j-1]; } return dp.back(); } }; ``` * 时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度 * 空间复杂度:O(m) ## 总结 本题是[62.不同路径](https://programmercarl.com/0062.不同路径.html)的障碍版,整体思路大体一致。 但就算是做过62.不同路径,在做本题也会有感觉遇到障碍无从下手。 其实只要考虑到,遇到障碍dp[i][j]保持0就可以了。 也有一些小细节,例如:初始化的部分,很容易忽略了障碍之后应该都是0的情况。 ## 其他语言版本 ### Java ```java class Solution { public int uniquePathsWithObstacles(int[][] obstacleGrid) { int m = obstacleGrid.length; int n = obstacleGrid[0].length; int[][] dp = new int[m][n]; //如果在起点或终点出现了障碍,直接返回0 if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) { return 0; } for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) { dp[i][0] = 1; } for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) { dp[0][j] = 1; } for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { dp[i][j] = (obstacleGrid[i][j] == 0) ? dp[i - 1][j] + dp[i][j - 1] : 0; } } return dp[m - 1][n - 1]; } } ``` ```java // 空间优化版本 class Solution { public int uniquePathsWithObstacles(int[][] obstacleGrid) { int m = obstacleGrid.length; int n = obstacleGrid[0].length; int[] dp = new int[n]; for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) { dp[j] = 1; } for (int i = 1; i < m; i++) { for (int j = 0; j < n; j++) { if (obstacleGrid[i][j] == 1) { dp[j] = 0; } else if (j != 0) { dp[j] += dp[j - 1]; } } } return dp[n - 1]; } } ``` ### Python 动态规划(版本一) ```python class Solution: def uniquePathsWithObstacles(self, obstacleGrid): m = len(obstacleGrid) n = len(obstacleGrid[0]) if obstacleGrid[m - 1][n - 1] == 1 or obstacleGrid[0][0] == 1: return 0 dp = [[0] * n for _ in range(m)] for i in range(m): if obstacleGrid[i][0] == 0: # 遇到障碍物时,直接退出循环,后面默认都是0 dp[i][0] = 1 else: break for j in range(n): if obstacleGrid[0][j] == 0: dp[0][j] = 1 else: break for i in range(1, m): for j in range(1, n): if obstacleGrid[i][j] == 1: continue dp[i][j] = dp[i - 1][j] + dp[i][j - 1] return dp[m - 1][n - 1] ``` 动态规划(版本二) ```python class Solution: def uniquePathsWithObstacles(self, obstacleGrid): m = len(obstacleGrid) # 网格的行数 n = len(obstacleGrid[0]) # 网格的列数 if obstacleGrid[m - 1][n - 1] == 1 or obstacleGrid[0][0] == 1: # 如果起点或终点有障碍物,直接返回0 return 0 dp = [[0] * n for _ in range(m)] # 创建一个二维列表用于存储路径数 # 设置起点的路径数为1 dp[0][0] = 1 if obstacleGrid[0][0] == 0 else 0 # 计算第一列的路径数 for i in range(1, m): if obstacleGrid[i][0] == 0: dp[i][0] = dp[i - 1][0] # 计算第一行的路径数 for j in range(1, n): if obstacleGrid[0][j] == 0: dp[0][j] = dp[0][j - 1] # 计算其他位置的路径数 for i in range(1, m): for j in range(1, n): if obstacleGrid[i][j] == 1: continue dp[i][j] = dp[i - 1][j] + dp[i][j - 1] return dp[m - 1][n - 1] # 返回终点的路径数 ``` 动态规划(版本三) ```python class Solution: def uniquePathsWithObstacles(self, obstacleGrid): if obstacleGrid[0][0] == 1: return 0 dp = [0] * len(obstacleGrid[0]) # 创建一个一维列表用于存储路径数 # 初始化第一行的路径数 for j in range(len(dp)): if obstacleGrid[0][j] == 1: dp[j] = 0 elif j == 0: dp[j] = 1 else: dp[j] = dp[j - 1] # 计算其他行的路径数 for i in range(1, len(obstacleGrid)): for j in range(len(dp)): if obstacleGrid[i][j] == 1: dp[j] = 0 elif j != 0: dp[j] = dp[j] + dp[j - 1] return dp[-1] # 返回最后一个元素,即终点的路径数 ``` 动态规划(版本四) ```python class Solution: def uniquePathsWithObstacles(self, obstacleGrid): if obstacleGrid[0][0] == 1: return 0 m, n = len(obstacleGrid), len(obstacleGrid[0]) dp = [0] * n # 创建一个一维列表用于存储路径数 # 初始化第一行的路径数 for j in range(n): if obstacleGrid[0][j] == 1: break dp[j] = 1 # 计算其他行的路径数 for i in range(1, m): if obstacleGrid[i][0] == 1: dp[0] = 0 for j in range(1, n): if obstacleGrid[i][j] == 1: dp[j] = 0 else: dp[j] += dp[j - 1] return dp[-1] # 返回最后一个元素,即终点的路径数 ``` 动态规划(版本五) ```python class Solution: def uniquePathsWithObstacles(self, obstacleGrid): if obstacleGrid[0][0] == 1: return 0 m, n = len(obstacleGrid), len(obstacleGrid[0]) dp = [0] * n # 创建一个一维列表用于存储路径数 # 初始化第一行的路径数 for j in range(n): if obstacleGrid[0][j] == 1: break dp[j] = 1 # 计算其他行的路径数 for i in range(1, m): if obstacleGrid[i][0] == 1: dp[0] = 0 for j in range(1, n): if obstacleGrid[i][j] == 1: dp[j] = 0 continue dp[j] += dp[j - 1] return dp[-1] # 返回最后一个元素,即终点的路径数 ``` ### Go ```go func uniquePathsWithObstacles(obstacleGrid [][]int) int { m, n := len(obstacleGrid), len(obstacleGrid[0]) //如果在起点或终点出现了障碍,直接返回0 if obstacleGrid[m-1][n-1] == 1 || obstacleGrid[0][0] == 1 { return 0 } // 定义一个dp数组 dp := make([][]int, m) for i, _ := range dp { dp[i] = make([]int, n) } // 初始化, 如果是障碍物, 后面的就都是0, 不用循环了 for i := 0; i < m && obstacleGrid[i][0] == 0; i++ { dp[i][0] = 1 } for i := 0; i < n && obstacleGrid[0][i] == 0; i++ { dp[0][i] = 1 } // dp数组推导过程 for i := 1; i < m; i++ { for j := 1; j < n; j++ { // 如果obstacleGrid[i][j]这个点是障碍物, 那么dp[i][j]保持为0 if obstacleGrid[i][j] != 1 { // 否则我们需要计算当前点可以到达的路径数 dp[i][j] = dp[i-1][j] + dp[i][j-1] } } } return dp[m-1][n-1] } ``` ### Javascript ```Javascript var uniquePathsWithObstacles = function(obstacleGrid) { const m = obstacleGrid.length const n = obstacleGrid[0].length const dp = Array(m).fill().map(item => Array(n).fill(0)) for (let i = 0; i < m && obstacleGrid[i][0] === 0; ++i) { dp[i][0] = 1 } for (let i = 0; i < n && obstacleGrid[0][i] === 0; ++i) { dp[0][i] = 1 } for (let i = 1; i < m; ++i) { for (let j = 1; j < n; ++j) { dp[i][j] = obstacleGrid[i][j] === 1 ? 0 : dp[i - 1][j] + dp[i][j - 1] } } return dp[m - 1][n - 1] }; // 版本二:内存优化,直接以原数组为dp数组 var uniquePathsWithObstacles = function(obstacleGrid) { const m = obstacleGrid.length; const n = obstacleGrid[0].length; for (let i = 0; i < m; i++) { for (let j = 0; j < n; j++) { if (obstacleGrid[i][j] === 0) { // 不是障碍物 if (i === 0) { // 取左边的值 obstacleGrid[i][j] = obstacleGrid[i][j - 1] ?? 1; } else if (j === 0) { // 取上边的值 obstacleGrid[i][j] = obstacleGrid[i - 1]?.[j] ?? 1; } else { // 取左边和上边的和 obstacleGrid[i][j] = obstacleGrid[i - 1][j] + obstacleGrid[i][j - 1]; } } else { // 如果是障碍物,则路径为0 obstacleGrid[i][j] = 0; } } } return obstacleGrid[m - 1][n - 1]; }; ``` ### TypeScript ```typescript function uniquePathsWithObstacles(obstacleGrid: number[][]): number { /** dp[i][j]: 到达(i, j)的路径数 dp[0][*]: 用u表示第一个障碍物下标,则u之前为1,u之后(含u)为0 dp[*][0]: 同上 ... dp[i][j]: obstacleGrid[i][j] === 1 ? 0 : dp[i-1][j] + dp[i][j-1]; */ const m: number = obstacleGrid.length; const n: number = obstacleGrid[0].length; const dp: number[][] = new Array(m).fill(0).map(_ => new Array(n).fill(0)); for (let i = 0; i < m && obstacleGrid[i][0] === 0; i++) { dp[i][0] = 1; } for (let i = 0; i < n && obstacleGrid[0][i] === 0; i++) { dp[0][i] = 1; } for (let i = 1; i < m; i++) { for (let j = 1; j < n; j++) { if (obstacleGrid[i][j] === 1) continue; dp[i][j] = dp[i - 1][j] + dp[i][j - 1]; } } return dp[m - 1][n - 1]; }; ``` ### Rust ```Rust impl Solution { pub fn unique_paths_with_obstacles(obstacle_grid: Vec>) -> i32 { let m: usize = obstacle_grid.len(); let n: usize = obstacle_grid[0].len(); if obstacle_grid[0][0] == 1 || obstacle_grid[m-1][n-1] == 1 { return 0; } let mut dp = vec![vec![0; n]; m]; for i in 0..m { if obstacle_grid[i][0] == 1 { break; } else { dp[i][0] = 1; } } for j in 0..n { if obstacle_grid[0][j] == 1 { break; } else { dp[0][j] = 1; } } for i in 1..m { for j in 1..n { if obstacle_grid[i][j] == 1 { continue; } dp[i][j] = dp[i-1][j] + dp[i][j-1]; } } dp[m-1][n-1] } } ``` 空间优化: ```rust impl Solution { pub fn unique_paths_with_obstacles(obstacle_grid: Vec>) -> i32 { let mut dp = vec![0; obstacle_grid[0].len()]; for (i, &v) in obstacle_grid[0].iter().enumerate() { if v == 0 { dp[i] = 1; } else { break; } } for rows in obstacle_grid.iter().skip(1) { for j in 0..rows.len() { if rows[j] == 1 { dp[j] = 0; } else if j != 0 { dp[j] += dp[j - 1]; } } } dp.pop().unwrap() } } ``` ### C ```c //初始化dp数组 int **initDP(int m, int n, int** obstacleGrid) { int **dp = (int**)malloc(sizeof(int*) * m); int i, j; //初始化每一行数组 for(i = 0; i < m; ++i) { dp[i] = (int*)malloc(sizeof(int) * n); } //先将第一行第一列设为0 for(i = 0; i < m; ++i) { dp[i][0] = 0; } for(j = 0; j < n; ++j) { dp[0][j] = 0; } //若碰到障碍,之后的都走不了。退出循环 for(i = 0; i < m; ++i) { if(obstacleGrid[i][0]) { break; } dp[i][0] = 1; } for(j = 0; j < n; ++j) { if(obstacleGrid[0][j]) break; dp[0][j] = 1; } return dp; } int uniquePathsWithObstacles(int** obstacleGrid, int obstacleGridSize, int* obstacleGridColSize){ int m = obstacleGridSize, n = *obstacleGridColSize; //初始化dp数组 int **dp = initDP(m, n, obstacleGrid); int i, j; for(i = 1; i < m; ++i) { for(j = 1; j < n; ++j) { //若当前i,j位置有障碍 if(obstacleGrid[i][j]) //路线不同 dp[i][j] = 0; else dp[i][j] = dp[i-1][j] + dp[i][j-1]; } } //返回最后终点的路径个数 return dp[m-1][n-1]; } ``` 空间优化版本: ```c int uniquePathsWithObstacles(int** obstacleGrid, int obstacleGridSize, int* obstacleGridColSize){ int m = obstacleGridSize; int n = obstacleGridColSize[0]; int *dp = (int*)malloc(sizeof(int) * n); int i, j; // 初始化dp为第一行起始状态。 for (j = 0; j < n; ++j) { if (obstacleGrid[0][j] == 1) dp[j] = 0; else if (j == 0) dp[j] = 1; else dp[j] = dp[j - 1]; } for (i = 1; i < m; ++i) { for (j = 0; j < n; ++j) { if (obstacleGrid[i][j] == 1) dp[j] = 0; // 若j为0,dp[j]表示最左边一列,无需改动 // 此处dp[j],dp[j-1]等同于二维dp中的dp[i-1][j]和dp[i][j-1] else if (j != 0) dp[j] += dp[j - 1]; } } return dp[n - 1]; } ``` ### Scala ```scala object Solution { import scala.util.control.Breaks._ def uniquePathsWithObstacles(obstacleGrid: Array[Array[Int]]): Int = { var (m, n) = (obstacleGrid.length, obstacleGrid(0).length) var dp = Array.ofDim[Int](m, n) // 比如break、continue这些流程控制需要使用breakable breakable( for (i <- 0 until m) { if (obstacleGrid(i)(0) != 1) dp(i)(0) = 1 else break() } ) breakable( for (j <- 0 until n) { if (obstacleGrid(0)(j) != 1) dp(0)(j) = 1 else break() } ) for (i <- 1 until m; j <- 1 until n; if obstacleGrid(i)(j) != 1) { dp(i)(j) = dp(i - 1)(j) + dp(i)(j - 1) } dp(m - 1)(n - 1) } } ```