在[回溯算法:求组合问题!](https://mp.weixin.qq.com/s/OnBjbLzuipWz_u4QfmgcqQ)中,我们通过回溯搜索法,解决了n个数中求k个数的组合问题。
> 可以直接看我的B栈视频讲解:[带你学透回溯算法-组合问题的剪枝操作](https://www.bilibili.com/video/BV1wi4y157er)
文中的回溯法是可以剪枝优化的,本篇我们继续来看一下题目77. 组合。
链接:https://leetcode-cn.com/problems/combinations/
**看本篇之前,需要先看[回溯算法:求组合问题!](https://mp.weixin.qq.com/s/OnBjbLzuipWz_u4QfmgcqQ)**。
大家先回忆一下[77. 组合]给出的回溯法的代码:
```
class Solution {
private:
vector> result; // 存放符合条件结果的集合
vector path; // 用来存放符合条件结果
void backtracking(int n, int k, int startIndex) {
if (path.size() == k) {
result.push_back(path);
return;
}
for (int i = startIndex; i <= n; i++) {
path.push_back(i); // 处理节点
backtracking(n, k, i + 1); // 递归
path.pop_back(); // 回溯,撤销处理的节点
}
}
public:
vector> combine(int n, int k) {
result.clear(); // 可以不写
path.clear(); // 可以不写
backtracking(n, k, 1);
return result;
}
};
```
# 剪枝优化
我们说过,回溯法虽然是暴力搜索,但也有时候可以有点剪枝优化一下的。
在遍历的过程中有如下代码:
```
for (int i = startIndex; i <= n; i++) {
path.push_back(i);
backtracking(n, k, i + 1);
path.pop_back();
}
```
这个遍历的范围是可以剪枝优化的,怎么优化呢?
来举一个例子,n = 4,k = 4的话,那么第一层for循环的时候,从元素2开始的遍历都没有意义了。 在第二层for循环,从元素3开始的遍历都没有意义了。
这么说有点抽象,如图所示:

图中每一个节点(图中为矩形),就代表本层的一个for循环,那么每一层的for循环从第二个数开始遍历的话,都没有意义,都是无效遍历。
**所以,可以剪枝的地方就在递归中每一层的for循环所选择的起始位置**。
**如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了**。
注意代码中i,就是for循环里选择的起始位置。
```
for (int i = startIndex; i <= n; i++) {
```
接下来看一下优化过程如下:
1. 已经选择的元素个数:path.size();
2. 还需要的元素个数为: k - path.size();
3. 在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历
为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。
举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。
从2开始搜索都是合理的,可以是组合[2, 3, 4]。
这里大家想不懂的话,建议也举一个例子,就知道是不是要+1了。
所以优化之后的for循环是:
```
for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) // i为本次搜索的起始位置
```
优化后整体代码如下:
```
class Solution {
private:
vector> result;
vector path;
void backtracking(int n, int k, int startIndex) {
if (path.size() == k) {
result.push_back(path);
return;
}
for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) { // 优化的地方
path.push_back(i); // 处理节点
backtracking(n, k, i + 1);
path.pop_back(); // 回溯,撤销处理的节点
}
}
public:
vector> combine(int n, int k) {
backtracking(n, k, 1);
return result;
}
};
```
# 总结
本篇我们准对求组合问题的回溯法代码做了剪枝优化,这个优化如果不画图的话,其实不好理解,也不好讲清楚。
所以我依然是把整个回溯过程抽象为一颗树形结构,然后可以直观的看出,剪枝究竟是剪的哪里。
**就酱,学到了就帮Carl转发一下吧,让更多的同学知道这里!**
-----------------------
* 微信:[程序员Carl](https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw)
* B站:[代码随想录](https://space.bilibili.com/525438321)
* 知识星球:[代码随想录](https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ)
