参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
> 双指针风骚起来,也是无敌
# 977.有序数组的平方
[力扣题目链接](https://leetcode-cn.com/problems/squares-of-a-sorted-array/)
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
示例 1:
输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100],排序后,数组变为 [0,1,9,16,100]
示例 2:
输入:nums = [-7,-3,2,3,11]
输出:[4,9,9,49,121]
# 思路
为了易于大家理解,我还特意录制了视频,[本题视频讲解](https://www.bilibili.com/video/BV1QB4y1D7ep)
## 暴力排序
最直观的想法,莫过于:每个数平方之后,排个序,美滋滋,代码如下:
```CPP
class Solution {
public:
vector sortedSquares(vector& A) {
for (int i = 0; i < A.size(); i++) {
A[i] *= A[i];
}
sort(A.begin(), A.end()); // 快速排序
return A;
}
};
```
这个时间复杂度是 O(n + nlogn), 可以说是O(nlogn)的时间复杂度,但为了和下面双指针法算法时间复杂度有鲜明对比,我记为 O(n + nlog n)。
## 双指针法
数组其实是有序的, 只不过负数平方之后可能成为最大数了。
那么数组平方的最大值就在数组的两端,不是最左边就是最右边,不可能是中间。
此时可以考虑双指针法了,i指向起始位置,j指向终止位置。
定义一个新数组result,和A数组一样的大小,让k指向result数组终止位置。
如果`A[i] * A[i] < A[j] * A[j]` 那么`result[k--] = A[j] * A[j];` 。
如果`A[i] * A[i] >= A[j] * A[j]` 那么`result[k--] = A[i] * A[i];` 。
如动画所示:

不难写出如下代码:
```CPP
class Solution {
public:
vector sortedSquares(vector& A) {
int k = A.size() - 1;
vector result(A.size(), 0);
for (int i = 0, j = A.size() - 1; i <= j;) { // 注意这里要i <= j,因为最后要处理两个元素
if (A[i] * A[i] < A[j] * A[j]) {
result[k--] = A[j] * A[j];
j--;
}
else {
result[k--] = A[i] * A[i];
i++;
}
}
return result;
}
};
```
此时的时间复杂度为O(n),相对于暴力排序的解法O(n + nlog n)还是提升不少的。
**这里还是说一下,大家不必太在意leetcode上执行用时,打败多少多少用户,这个就是一个玩具,非常不准确。**
做题的时候自己能分析出来时间复杂度就可以了,至于leetcode上执行用时,大概看一下就行,只要达到最优的时间复杂度就可以了,
一样的代码多提交几次可能就击败百分之百了.....
## 其他语言版本
Java:
```Java
class Solution {
public int[] sortedSquares(int[] nums) {
int right = nums.length - 1;
int left = 0;
int[] result = new int[nums.length];
int index = result.length - 1;
while (left <= right) {
if (nums[left] * nums[left] > nums[right] * nums[right]) {
result[index--] = nums[left] * nums[left];
++left;
} else {
result[index--] = nums[right] * nums[right];
--right;
}
}
return result;
}
}
```
```java
class Solution {
public int[] sortedSquares(int[] nums) {
int l = 0;
int r = nums.length - 1;
int[] res = new int[nums.length];
int j = nums.length - 1;
while(l <= r){
if(nums[l] * nums[l] > nums[r] * nums[r]){
res[j--] = nums[l] * nums[l++];
}else{
res[j--] = nums[r] * nums[r--];
}
}
return res;
}
}
```
Python:
```Python
class Solution:
def sortedSquares(self, nums: List[int]) -> List[int]:
n = len(nums)
i,j,k = 0,n - 1,n - 1
ans = [-1] * n
while i <= j:
lm = nums[i] ** 2
rm = nums[j] ** 2
if lm > rm:
ans[k] = lm
i += 1
else:
ans[k] = rm
j -= 1
k -= 1
return ans
```
Go:
```Go
func sortedSquares(nums []int) []int {
n := len(nums)
i, j, k := 0, n-1, n-1
ans := make([]int, n)
for i <= j {
lm, rm := nums[i]*nums[i], nums[j]*nums[j]
if lm > rm {
ans[k] = lm
i++
} else {
ans[k] = rm
j--
}
k--
}
return ans
}
```
Rust
```
impl Solution {
pub fn sorted_squares(nums: Vec) -> Vec {
let n = nums.len();
let (mut i,mut j,mut k) = (0,n - 1,n- 1);
let mut ans = vec![0;n];
while i <= j{
if nums[i] * nums[i] < nums[j] * nums[j] {
ans[k] = nums[j] * nums[j];
j -= 1;
}else{
ans[k] = nums[i] * nums[i];
i += 1;
}
k -= 1;
}
ans
}
}
```
Javascript:
```Javascript
/**
* @param {number[]} nums
* @return {number[]}
*/
var sortedSquares = function(nums) {
let n = nums.length;
let res = new Array(n).fill(0);
let i = 0, j = n - 1, k = n - 1;
while (i <= j) {
let left = nums[i] * nums[i],
right = nums[j] * nums[j];
if (left < right) {
res[k--] = right;
j--;
} else {
res[k--] = left;
i++;
}
}
return res;
};
```
Typescript:
双指针法:
```typescript
function sortedSquares(nums: number[]): number[] {
let left: number = 0, right: number = nums.length - 1;
let resArr: number[] = new Array(nums.length);
let resArrIndex: number = resArr.length - 1;
while (left <= right) {
if (Math.abs(nums[left]) < Math.abs(nums[right])) {
resArr[resArrIndex] = nums[right--] ** 2;
} else {
resArr[resArrIndex] = nums[left++] ** 2;
}
resArrIndex--;
}
return resArr;
};
```
骚操作法(暴力思路):
```typescript
function sortedSquares(nums: number[]): number[] {
return nums.map(i => i * i).sort((a, b) => a - b);
};
```
Swift:
```swift
func sortedSquares(_ nums: [Int]) -> [Int] {
// 指向新数组最后一个元素
var k = nums.count - 1
// 指向原数组第一个元素
var i = 0
// 指向原数组最后一个元素
var j = nums.count - 1
// 初始化新数组(用-1填充)
var result = Array(repeating: -1, count: nums.count)
for _ in 0.. nums[right]**2
result << nums[left]**2
left += 1
else
result << nums[right]**2
right -= 1
end
end
result.reverse
end
```
C:
```c
int* sortedSquares(int* nums, int numsSize, int* returnSize){
//返回的数组大小就是原数组大小
*returnSize = numsSize;
//创建两个指针,right指向数组最后一位元素,left指向数组第一位元素
int right = numsSize - 1;
int left = 0;
//最后要返回的结果数组
int* ans = (int*)malloc(sizeof(int) * numsSize);
int index;
for(index = numsSize - 1; index >= 0; index--) {
//左指针指向元素的平方
int lSquare = nums[left] * nums[left];
//右指针指向元素的平方
int rSquare = nums[right] * nums[right];
//若左指针指向元素平方比右指针指向元素平方大,将左指针指向元素平方放入结果数组。左指针右移一位
if(lSquare > rSquare) {
ans[index] = lSquare;
left++;
}
//若右指针指向元素平方比左指针指向元素平方大,将右指针指向元素平方放入结果数组。右指针左移一位
else {
ans[index] = rSquare;
right--;
}
}
//返回结果数组
return ans;
}
```
PHP:
```php
class Solution {
/**
* @param Integer[] $nums
* @return Integer[]
*/
function sortedSquares($nums) {
// 双指针法
$res = [];
for ($i = 0; $i < count($nums); $i++) {
$res[$i] = 0;
}
$k = count($nums) - 1;
for ($i = 0, $j = count($nums) - 1; $i <= $j; ) {
if ($nums[$i] ** 2 < $nums[$j] ** 2) {
$res[$k--] = $nums[$j] ** 2;
$j--;
}
else {
$res[$k--] = $nums[$i] ** 2;
$i++;
}
}
return $res;
}
}
```
-----------------------