参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

# 404.左叶子之和 [力扣题目链接](https://leetcode.cn/problems/sum-of-left-leaves/) 计算给定二叉树的所有左叶子之和。 示例: ![404.左叶子之和1](https://code-thinking-1253855093.file.myqcloud.com/pics/20210204151927654.png) ## 算法公开课 **[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html)::[二叉树的题目中,总有一些规则让你找不到北 | LeetCode:404.左叶子之和](https://www.bilibili.com/video/BV1GY4y1K7z8),相信结合视频在看本篇题解,更有助于大家对本题的理解**。 ## 思路 **首先要注意是判断左叶子,不是二叉树左侧节点,所以不要上来想着层序遍历。** 因为题目中其实没有说清楚左叶子究竟是什么节点,那么我来给出左叶子的明确定义:**节点A的左孩子不为空,且左孩子的左右孩子都为空(说明是叶子节点),那么A节点的左孩子为左叶子节点** 大家思考一下如下图中二叉树,左叶子之和究竟是多少? ![404.左叶子之和](https://code-thinking-1253855093.file.myqcloud.com/pics/20210204151949672.png) **其实是0,因为这棵树根本没有左叶子!** 但看这个图的左叶子之和是多少? ![图二](https://code-thinking-1253855093.file.myqcloud.com/pics/20220902165805.png) 相信通过这两个图,大家对最左叶子的定义有明确理解了。 那么**判断当前节点是不是左叶子是无法判断的,必须要通过节点的父节点来判断其左孩子是不是左叶子。** 如果该节点的左节点不为空,该节点的左节点的左节点为空,该节点的左节点的右节点为空,则找到了一个左叶子,判断代码如下: ```CPP if (node->left != NULL && node->left->left == NULL && node->left->right == NULL) { 左叶子节点处理逻辑 } ``` ### 递归法 递归的遍历顺序为后序遍历(左右中),是因为要通过递归函数的返回值来累加求取左叶子数值之和。 递归三部曲: 1. 确定递归函数的参数和返回值 判断一个树的左叶子节点之和,那么一定要传入树的根节点,递归函数的返回值为数值之和,所以为int 使用题目中给出的函数就可以了。 2. 确定终止条件 如果遍历到空节点,那么左叶子值一定是0 ```CPP if (root == NULL) return 0; ``` 注意,只有当前遍历的节点是父节点,才能判断其子节点是不是左叶子。 所以如果当前遍历的节点是叶子节点,那其左叶子也必定是0,那么终止条件为: ```CPP if (root == NULL) return 0; if (root->left == NULL && root->right== NULL) return 0; //其实这个也可以不写,如果不写不影响结果,但就会让递归多进行了一层。 ``` 3. 确定单层递归的逻辑 当遇到左叶子节点的时候,记录数值,然后通过递归求取左子树左叶子之和,和 右子树左叶子之和,相加便是整个树的左叶子之和。 代码如下: ```CPP int leftValue = sumOfLeftLeaves(root->left); // 左 if (root->left && !root->left->left && !root->left->right) { leftValue = root->left->val; } int rightValue = sumOfLeftLeaves(root->right); // 右 int sum = leftValue + rightValue; // 中 return sum; ``` 整体递归代码如下: ```CPP class Solution { public: int sumOfLeftLeaves(TreeNode* root) { if (root == NULL) return 0; if (root->left == NULL && root->right== NULL) return 0; int leftValue = sumOfLeftLeaves(root->left); // 左 if (root->left && !root->left->left && !root->left->right) { // 左子树就是一个左叶子的情况 leftValue = root->left->val; } int rightValue = sumOfLeftLeaves(root->right); // 右 int sum = leftValue + rightValue; // 中 return sum; } }; ``` 以上代码精简之后如下: ```CPP class Solution { public: int sumOfLeftLeaves(TreeNode* root) { if (root == NULL) return 0; int leftValue = 0; if (root->left != NULL && root->left->left == NULL && root->left->right == NULL) { leftValue = root->left->val; } return leftValue + sumOfLeftLeaves(root->left) + sumOfLeftLeaves(root->right); } }; ``` 精简之后的代码其实看不出来用的是什么遍历方式了,对于算法初学者以上根据第一个版本来学习。 ### 迭代法 本题迭代法使用前中后序都是可以的,只要把左叶子节点统计出来,就可以了,那么参考文章 [二叉树:听说递归能做的,栈也能做!](https://programmercarl.com/二叉树的迭代遍历.html)和[二叉树:迭代法统一写法](https://programmercarl.com/二叉树的统一迭代法.html)中的写法,可以写出一个前序遍历的迭代法。 判断条件都是一样的,代码如下: ```CPP class Solution { public: int sumOfLeftLeaves(TreeNode* root) { stack st; if (root == NULL) return 0; st.push(root); int result = 0; while (!st.empty()) { TreeNode* node = st.top(); st.pop(); if (node->left != NULL && node->left->left == NULL && node->left->right == NULL) { result += node->left->val; } if (node->right) st.push(node->right); if (node->left) st.push(node->left); } return result; } }; ``` ## 总结 这道题目要求左叶子之和,其实是比较绕的,因为不能判断本节点是不是左叶子节点。 此时就要通过节点的父节点来判断其左孩子是不是左叶子了。 **平时我们解二叉树的题目时,已经习惯了通过节点的左右孩子判断本节点的属性,而本题我们要通过节点的父节点判断本节点的属性。** 希望通过这道题目,可以扩展大家对二叉树的解题思路。 ## 其他语言版本 ### Java: **递归** ```java class Solution { public int sumOfLeftLeaves(TreeNode root) { if (root == null) return 0; int leftValue = sumOfLeftLeaves(root.left); // 左 int rightValue = sumOfLeftLeaves(root.right); // 右 int midValue = 0; if (root.left != null && root.left.left == null && root.left.right == null) { midValue = root.left.val; } int sum = midValue + leftValue + rightValue; // 中 return sum; } } ``` **迭代** ```java class Solution { public int sumOfLeftLeaves(TreeNode root) { if (root == null) return 0; Stack stack = new Stack<> (); stack.add(root); int result = 0; while (!stack.isEmpty()) { TreeNode node = stack.pop(); if (node.left != null && node.left.left == null && node.left.right == null) { result += node.left.val; } if (node.right != null) stack.add(node.right); if (node.left != null) stack.add(node.left); } return result; } } ``` ```java // 层序遍历迭代法 class Solution { public int sumOfLeftLeaves(TreeNode root) { int sum = 0; if (root == null) return 0; Queue queue = new LinkedList<>(); queue.offer(root); while (!queue.isEmpty()) { int size = queue.size(); while (size -- > 0) { TreeNode node = queue.poll(); if (node.left != null) { // 左节点不为空 queue.offer(node.left); if (node.left.left == null && node.left.right == null){ // 左叶子节点 sum += node.left.val; } } if (node.right != null) queue.offer(node.right); } } return sum; } } ``` ### Python: 递归 ```python # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def sumOfLeftLeaves(self, root): if root is None: return 0 if root.left is None and root.right is None: return 0 leftValue = self.sumOfLeftLeaves(root.left) # 左 if root.left and not root.left.left and not root.left.right: # 左子树是左叶子的情况 leftValue = root.left.val rightValue = self.sumOfLeftLeaves(root.right) # 右 sum_val = leftValue + rightValue # 中 return sum_val ``` 递归精简版 ```python # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def sumOfLeftLeaves(self, root): if root is None: return 0 leftValue = 0 if root.left is not None and root.left.left is None and root.left.right is None: leftValue = root.left.val return leftValue + self.sumOfLeftLeaves(root.left) + self.sumOfLeftLeaves(root.right) ``` 迭代法 ```python # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def sumOfLeftLeaves(self, root): if root is None: return 0 st = [root] result = 0 while st: node = st.pop() if node.left and node.left.left is None and node.left.right is None: result += node.left.val if node.right: st.append(node.right) if node.left: st.append(node.left) return result ``` ### Go: **递归法** ```go func sumOfLeftLeaves(root *TreeNode) int { if root == nil { return 0 } leftValue := sumOfLeftLeaves(root.Left) // 左 if root.Left != nil && root.Left.Left == nil && root.Left.Right == nil { leftValue = root.Left.Val // 中 } rightValue := sumOfLeftLeaves(root.Right) // 右 return leftValue + rightValue } ``` **迭代法(前序遍历)** ```go func sumOfLeftLeaves(root *TreeNode) int { st := make([]*TreeNode, 0) if root == nil { return 0 } st = append(st, root) result := 0 for len(st) != 0 { node := st[len(st)-1] st = st[:len(st)-1] if node.Left != nil && node.Left.Left == nil && node.Left.Right == nil { result += node.Left.Val } if node.Right != nil { st = append(st, node.Right) } if node.Left != nil { st = append(st, node.Left) } } return result } ``` ### JavaScript: **递归法** ```javascript var sumOfLeftLeaves = function(root) { //采用后序遍历 递归遍历 // 1. 确定递归函数参数 const nodesSum = function(node) { // 2. 确定终止条件 if(node === null) { return 0; } let leftValue = nodesSum(node.left); let rightValue = nodesSum(node.right); // 3. 单层递归逻辑 let midValue = 0; if(node.left && node.left.left === null && node.left.right === null) { midValue = node.left.val; } let sum = midValue + leftValue + rightValue; return sum; } return nodesSum(root); }; ``` **迭代法** ```javascript var sumOfLeftLeaves = function(root) { //采用层序遍历 if(root === null) { return null; } let queue = []; let sum = 0; queue.push(root); while(queue.length) { let node = queue.shift(); if(node.left !== null && node.left.left === null && node.left.right === null) { sum+=node.left.val; } node.left && queue.push(node.left); node.right && queue.push(node.right); } return sum; }; ``` ### TypeScript: > 递归法 ```typescript function sumOfLeftLeaves(root: TreeNode | null): number { if (root === null) return 0; let midVal: number = 0; if ( root.left !== null && root.left.left === null && root.left.right === null ) { midVal = root.left.val; } let leftVal: number = sumOfLeftLeaves(root.left); let rightVal: number = sumOfLeftLeaves(root.right); return midVal + leftVal + rightVal; }; ``` > 迭代法 ```typescript function sumOfLeftLeaves(root: TreeNode | null): number { let helperStack: TreeNode[] = []; let tempNode: TreeNode; let sum: number = 0; if (root !== null) helperStack.push(root); while (helperStack.length > 0) { tempNode = helperStack.pop()!; if ( tempNode.left !== null && tempNode.left.left === null && tempNode.left.right === null ) { sum += tempNode.left.val; } if (tempNode.right !== null) helperStack.push(tempNode.right); if (tempNode.left !== null) helperStack.push(tempNode.left); } return sum; }; ``` ### Swift: **递归法** ```swift func sumOfLeftLeaves(_ root: TreeNode?) -> Int { guard let root = root else { return 0 } let leftValue = sumOfLeftLeaves(root.left) let rightValue = sumOfLeftLeaves(root.right) var midValue: Int = 0 if root.left != nil && root.left?.left == nil && root.left?.right == nil { midValue = root.left!.val } let sum = midValue + leftValue + rightValue return sum } ``` **迭代法** ```swift func sumOfLeftLeaves(_ root: TreeNode?) -> Int { guard let root = root else { return 0 } var stack = Array() stack.append(root) var sum = 0 while !stack.isEmpty { let lastNode = stack.removeLast() if lastNode.left != nil && lastNode.left?.left == nil && lastNode.left?.right == nil { sum += lastNode.left!.val } if let right = lastNode.right { stack.append(right) } if let left = lastNode.left { stack.append(left) } } return sum } ``` ### C: 递归法: ```c int sumOfLeftLeaves(struct TreeNode* root){ // 递归结束条件:若当前结点为空,返回0 if(!root) return 0; // 递归取左子树的左结点和和右子树的左结点和 int leftValue = sumOfLeftLeaves(root->left); int rightValue = sumOfLeftLeaves(root->right); // 若当前结点的左结点存在,且其为叶子结点。取它的值 int midValue = 0; if(root->left && (!root->left->left && !root->left->right)) midValue = root->left->val; return leftValue + rightValue + midValue; } ``` 迭代法: ```c int sumOfLeftLeaves(struct TreeNode* root){ struct TreeNode* stack[1000]; int stackTop = 0; // 若传入root结点不为空,将其入栈 if(root) stack[stackTop++] = root; int sum = 0; //若栈不为空,进行循环 while(stackTop) { // 出栈栈顶元素 struct TreeNode *topNode = stack[--stackTop]; // 若栈顶元素的左孩子为左叶子结点,将其值加入sum中 if(topNode->left && (!topNode->left->left && !topNode->left->right)) sum += topNode->left->val; // 若当前栈顶结点有左右孩子。将他们加入栈中进行遍历 if(topNode->right) stack[stackTop++] = topNode->right; if(topNode->left) stack[stackTop++] = topNode->left; } return sum; } ``` ### Scala: **递归:** ```scala object Solution { def sumOfLeftLeaves(root: TreeNode): Int = { if(root == null) return 0 var midValue = 0 if(root.left != null && root.left.left == null && root.left.right == null){ midValue = root.left.value } // return关键字可以省略 midValue + sumOfLeftLeaves(root.left) + sumOfLeftLeaves(root.right) } } ``` **迭代:** ```scala object Solution { import scala.collection.mutable def sumOfLeftLeaves(root: TreeNode): Int = { val stack = mutable.Stack[TreeNode]() if (root == null) return 0 stack.push(root) var sum = 0 while (!stack.isEmpty) { val curNode = stack.pop() if (curNode.left != null && curNode.left.left == null && curNode.left.right == null) { sum += curNode.left.value // 如果满足条件就累加 } if (curNode.right != null) stack.push(curNode.right) if (curNode.left != null) stack.push(curNode.left) } sum } } ``` ### Rust: **递归** ```rust use std::cell::RefCell; use std::rc::Rc; impl Solution { pub fn sum_of_left_leaves(root: Option>>) -> i32 { let mut res = 0; if let Some(node) = root { if let Some(left) = &node.borrow().left { if left.borrow().right.is_none() && left.borrow().right.is_none() { res += left.borrow().val; } } res + Self::sum_of_left_leaves(node.borrow().left.clone()) + Self::sum_of_left_leaves(node.borrow().right.clone()) } else { 0 } } } ``` **迭代:** ```rust use std::cell::RefCell; use std::rc::Rc; impl Solution { pub fn sum_of_left_leaves(root: Option>>) -> i32 { let mut res = 0; let mut stack = vec![root]; while !stack.is_empty() { if let Some(node) = stack.pop().unwrap() { if let Some(left) = &node.borrow().left { if left.borrow().left.is_none() && left.borrow().right.is_none() { res += left.borrow().val; } stack.push(Some(left.to_owned())); } if let Some(right) = &node.borrow().right { stack.push(Some(right.to_owned())); } } } res } } ``` ### C# ```csharp // 递归 public int SumOfLeftLeaves(TreeNode root) { if (root == null) return 0; int leftValue = SumOfLeftLeaves(root.left); if (root.left != null && root.left.left == null && root.left.right == null) { leftValue += root.left.val; } int rightValue = SumOfLeftLeaves(root.right); return leftValue + rightValue; } ```