README_EN.md
| comments | difficulty | edit_url |
|---|---|---|
| true | Easy | https://github.com/doocs/leetcode/edit/main/lcci/01.02.Check%20Permutation/README_EN.md |
01.02. Check Permutation
Description
Given two strings,write a method to decide if one is a permutation of the other.
Example 1:
Input: s1 = "abc", s2 = "bca" Output: true
Example 2:
Input: s1 = "abc", s2 = "bad" Output: false
Note:
0 <= len(s1) <= 1000 <= len(s2) <= 100
Solutions
Solution 1: Array or Hash Table
First, we check whether the lengths of the two strings are equal. If they are not equal, we directly return false.
Then, we use an array or hash table to count the occurrence of each character in string s1.
Next, we traverse the other string s2. For each character we encounter, we decrement its corresponding count. If the count after decrementing is less than 0, it means that the occurrence of characters in the two strings is different, so we directly return false.
Finally, after traversing string s2, we return true.
Note: In this problem, all test case strings only contain lowercase letters, so we can directly create an array of length 26 for counting.
The time complexity is O(n), and the space complexity is O(C). Here, n is the length of the string, and C is the size of the character set. In this problem, C=26.
Python3
class Solution:
def CheckPermutation(self, s1: str, s2: str) -> bool:
return Counter(s1) == Counter(s2)
Java
class Solution {
public boolean CheckPermutation(String s1, String s2) {
if (s1.length() != s2.length()) {
return false;
}
int[] cnt = new int[26];
for (char c : s1.toCharArray()) {
++cnt[c - 'a'];
}
for (char c : s2.toCharArray()) {
if (--cnt[c - 'a'] < 0) {
return false;
}
}
return true;
}
}
C++
class Solution {
public:
bool CheckPermutation(string s1, string s2) {
if (s1.size() != s2.size()) {
return false;
}
int cnt[26]{};
for (char c : s1) {
++cnt[c - 'a'];
}
for (char c : s2) {
if (--cnt[c - 'a'] < 0) {
return false;
}
}
return true;
}
};
Go
func CheckPermutation(s1 string, s2 string) bool {
if len(s1) != len(s2) {
return false
}
cnt := make([]int, 26)
for _, c := range s1 {
cnt[c-'a']++
}
for _, c := range s2 {
if cnt[c-'a']--; cnt[c-'a'] < 0 {
return false
}
}
return true
}
TypeScript
function CheckPermutation(s1: string, s2: string): boolean {
if (s1.length !== s2.length) {
return false;
}
const cnt: Record<string, number> = {};
for (const c of s1) {
cnt[c] = (cnt[c] || 0) + 1;
}
for (const c of s2) {
if (!cnt[c]) {
return false;
}
cnt[c]--;
}
return true;
}
Rust
impl Solution {
pub fn check_permutation(s1: String, s2: String) -> bool {
if s1.len() != s2.len() {
return false;
}
let mut cnt = vec![0; 26];
for c in s1.chars() {
cnt[(c as usize - 'a' as usize)] += 1;
}
for c in s2.chars() {
let index = c as usize - 'a' as usize;
if cnt[index] == 0 {
return false;
}
cnt[index] -= 1;
}
true
}
}
JavaScript
/**
* @param {string} s1
* @param {string} s2
* @return {boolean}
*/
var CheckPermutation = function (s1, s2) {
if (s1.length !== s2.length) {
return false;
}
const cnt = {};
for (const c of s1) {
cnt[c] = (cnt[c] || 0) + 1;
}
for (const c of s2) {
if (!cnt[c]) {
return false;
}
cnt[c]--;
}
return true;
};
Swift
class Solution {
func CheckPermutation(_ s1: String, _ s2: String) -> Bool {
if s1.count != s2.count {
return false
}
var cnt = [Int](repeating: 0, count: 26)
for char in s1 {
cnt[Int(char.asciiValue! - Character("a").asciiValue!)] += 1
}
for char in s2 {
let index = Int(char.asciiValue! - Character("a").asciiValue!)
if cnt[index] == 0 {
return false
}
cnt[index] -= 1
}
return true
}
}
Solution 2: Sorting
We can also sort the two strings in lexicographical order, and then compare whether the two strings are equal.
The time complexity is O(n \times \log n), and the space complexity is O(n). Here, n is the length of the string.
Python3
class Solution:
def CheckPermutation(self, s1: str, s2: str) -> bool:
return sorted(s1) == sorted(s2)
Java
class Solution {
public boolean CheckPermutation(String s1, String s2) {
char[] cs1 = s1.toCharArray();
char[] cs2 = s2.toCharArray();
Arrays.sort(cs1);
Arrays.sort(cs2);
return Arrays.equals(cs1, cs2);
}
}
C++
class Solution {
public:
bool CheckPermutation(string s1, string s2) {
ranges::sort(s1);
ranges::sort(s2);
return s1 == s2;
}
};
Go
func CheckPermutation(s1 string, s2 string) bool {
cs1, cs2 := []byte(s1), []byte(s2)
sort.Slice(cs1, func(i, j int) bool { return cs1[i] < cs1[j] })
sort.Slice(cs2, func(i, j int) bool { return cs2[i] < cs2[j] })
return string(cs1) == string(cs2)
}
TypeScript
function CheckPermutation(s1: string, s2: string): boolean {
return [...s1].sort().join('') === [...s2].sort().join('');
}
Rust
impl Solution {
pub fn check_permutation(s1: String, s2: String) -> bool {
let mut s1: Vec<char> = s1.chars().collect();
let mut s2: Vec<char> = s2.chars().collect();
s1.sort();
s2.sort();
s1 == s2
}
}
JavaScript
/**
* @param {string} s1
* @param {string} s2
* @return {boolean}
*/
var CheckPermutation = function (s1, s2) {
return [...s1].sort().join('') === [...s2].sort().join('');
};
Swift
class Solution {
func CheckPermutation(_ s1: String, _ s2: String) -> Bool {
let s1 = s1.sorted()
let s2 = s2.sorted()
return s1 == s2
}
}