mirror of https://github.com/doocs/leetcode.git
|
|
||
|---|---|---|
| .. | ||
| README.md | ||
| README_EN.md | ||
| Solution.cpp | ||
| Solution.go | ||
| Solution.java | ||
| Solution.py | ||
| Solution.rs | ||
| Solution.swift | ||
| Solution.ts | ||
README_EN.md
| comments | difficulty | edit_url |
|---|---|---|
| true | Medium | https://github.com/doocs/leetcode/edit/main/lcci/08.05.Recursive%20Mulitply/README_EN.md |
08.05. Recursive Mulitply
Description
Write a recursive function to multiply two positive integers without using the * operator. You can use addition, subtraction, and bit shifting, but you should minimize the number of those operations.
Example 1:
Input: A = 1, B = 10
Output: 10
Example 2:
Input: A = 3, B = 4
Output: 12
Note:
- The result will not overflow.
Solutions
Solution 1: Recursion + Bit Manipulation
First, we check if B is 1. If it is, we directly return A.
Otherwise, we check if B is an odd number. If it is, we can right shift B by one bit, then recursively call the function, and finally left shift the result by one bit and add A. If not, we can right shift B by one bit, then recursively call the function, and finally left shift the result by one bit.
The time complexity is O(\log n), and the space complexity is O(\log n). Here, n is the size of B.
Python3
class Solution:
def multiply(self, A: int, B: int) -> int:
if B == 1:
return A
if B & 1:
return (self.multiply(A, B >> 1) << 1) + A
return self.multiply(A, B >> 1) << 1
Java
class Solution {
public int multiply(int A, int B) {
if (B == 1) {
return A;
}
if ((B & 1) == 1) {
return (multiply(A, B >> 1) << 1) + A;
}
return multiply(A, B >> 1) << 1;
}
}
C++
class Solution {
public:
int multiply(int A, int B) {
if (B == 1) {
return A;
}
if ((B & 1) == 1) {
return (multiply(A, B >> 1) << 1) + A;
}
return multiply(A, B >> 1) << 1;
}
};
Go
func multiply(A int, B int) int {
if B == 1 {
return A
}
if B&1 == 1 {
return (multiply(A, B>>1) << 1) + A
}
return multiply(A, B>>1) << 1
}
TypeScript
function multiply(A: number, B: number): number {
if (B === 1) {
return A;
}
if ((B & 1) === 1) {
return (multiply(A, B >> 1) << 1) + A;
}
return multiply(A, B >> 1) << 1;
}
Rust
impl Solution {
pub fn multiply(a: i32, b: i32) -> i32 {
if b == 1 {
return a;
}
if (b & 1) == 1 {
return (Self::multiply(a, b >> 1) << 1) + a;
}
Self::multiply(a, b >> 1) << 1
}
}
Swift
class Solution {
func multiply(_ A: Int, _ B: Int) -> Int {
if B == 1 {
return A
}
if (B & 1) == 1 {
return (multiply(A, B >> 1) << 1) + A
}
return multiply(A, B >> 1) << 1
}
}