leetcode/solution/0000-0099/0072.Edit Distance
..
README.md
README_EN.md
Solution.cpp
Solution.go
Solution.java
Solution.js
Solution.py
Solution.ts

README_EN.md

comments difficulty edit_url tags
true Medium https://github.com/doocs/leetcode/edit/main/solution/0000-0099/0072.Edit%20Distance/README_EN.md
String
Dynamic Programming

72. Edit Distance

中文文档

Description

Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2.

You have the following three operations permitted on a word:

  • Insert a character
  • Delete a character
  • Replace a character

 

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation: 
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation: 
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

 

Constraints:

  • 0 <= word1.length, word2.length <= 500
  • word1 and word2 consist of lowercase English letters.

Solutions

Solution 1: Dynamic Programming

We define f[i][j] as the minimum number of operations to convert word1 of length i to word2 of length j. f[i][0] = i, f[0][j] = j, i \in [1, m], j \in [0, n].

We consider f[i][j]:

  • If word1[i - 1] = word2[j - 1], then we only need to consider the minimum number of operations to convert word1 of length i - 1 to word2 of length j - 1, so f[i][j] = f[i - 1][j - 1];
  • Otherwise, we can consider insert, delete, and replace operations, then f[i][j] = \min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1.

Finally, we can get the state transition equation:


f[i][j] = \begin{cases}
i, & \textit{if } j = 0 \\
j, & \textit{if } i = 0 \\
f[i - 1][j - 1], & \textit{if } word1[i - 1] = word2[j - 1] \\
\min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1, & \textit{otherwise}
\end{cases}

Finally, we return f[m][n].

The time complexity is O(m \times n), and the space complexity is O(m \times n). m and n are the lengths of word1 and word2 respectively.

Python3

class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        m, n = len(word1), len(word2)
        f = [[0] * (n + 1) for _ in range(m + 1)]
        for j in range(1, n + 1):
            f[0][j] = j
        for i, a in enumerate(word1, 1):
            f[i][0] = i
            for j, b in enumerate(word2, 1):
                if a == b:
                    f[i][j] = f[i - 1][j - 1]
                else:
                    f[i][j] = min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1
        return f[m][n]

Java

class Solution {
    public int minDistance(String word1, String word2) {
        int m = word1.length(), n = word2.length();
        int[][] f = new int[m + 1][n + 1];
        for (int j = 1; j <= n; ++j) {
            f[0][j] = j;
        }
        for (int i = 1; i <= m; ++i) {
            f[i][0] = i;
            for (int j = 1; j <= n; ++j) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                    f[i][j] = f[i - 1][j - 1];
                } else {
                    f[i][j] = Math.min(f[i - 1][j], Math.min(f[i][j - 1], f[i - 1][j - 1])) + 1;
                }
            }
        }
        return f[m][n];
    }
}

C++

class Solution {
public:
    int minDistance(string word1, string word2) {
        int m = word1.size(), n = word2.size();
        int f[m + 1][n + 1];
        for (int j = 0; j <= n; ++j) {
            f[0][j] = j;
        }
        for (int i = 1; i <= m; ++i) {
            f[i][0] = i;
            for (int j = 1; j <= n; ++j) {
                if (word1[i - 1] == word2[j - 1]) {
                    f[i][j] = f[i - 1][j - 1];
                } else {
                    f[i][j] = min({f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]}) + 1;
                }
            }
        }
        return f[m][n];
    }
};

Go

func minDistance(word1 string, word2 string) int {
	m, n := len(word1), len(word2)
	f := make([][]int, m+1)
	for i := range f {
		f[i] = make([]int, n+1)
	}
	for j := 1; j <= n; j++ {
		f[0][j] = j
	}
	for i := 1; i <= m; i++ {
		f[i][0] = i
		for j := 1; j <= n; j++ {
			if word1[i-1] == word2[j-1] {
				f[i][j] = f[i-1][j-1]
			} else {
				f[i][j] = min(f[i-1][j], min(f[i][j-1], f[i-1][j-1])) + 1
			}
		}
	}
	return f[m][n]
}

TypeScript

function minDistance(word1: string, word2: string): number {
    const m = word1.length;
    const n = word2.length;
    const f: number[][] = Array(m + 1)
        .fill(0)
        .map(() => Array(n + 1).fill(0));
    for (let j = 1; j <= n; ++j) {
        f[0][j] = j;
    }
    for (let i = 1; i <= m; ++i) {
        f[i][0] = i;
        for (let j = 1; j <= n; ++j) {
            if (word1[i - 1] === word2[j - 1]) {
                f[i][j] = f[i - 1][j - 1];
            } else {
                f[i][j] = Math.min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1;
            }
        }
    }
    return f[m][n];
}

JavaScript

/**
 * @param {string} word1
 * @param {string} word2
 * @return {number}
 */
var minDistance = function (word1, word2) {
    const m = word1.length;
    const n = word2.length;
    const f = Array(m + 1)
        .fill(0)
        .map(() => Array(n + 1).fill(0));
    for (let j = 1; j <= n; ++j) {
        f[0][j] = j;
    }
    for (let i = 1; i <= m; ++i) {
        f[i][0] = i;
        for (let j = 1; j <= n; ++j) {
            if (word1[i - 1] === word2[j - 1]) {
                f[i][j] = f[i - 1][j - 1];
            } else {
                f[i][j] = Math.min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1;
            }
        }
    }
    return f[m][n];
};