|
…
|
||
|---|---|---|
| .. | ||
| README.md | ||
| README_EN.md | ||
| Solution.cpp | ||
| Solution.go | ||
| Solution.java | ||
| Solution.py | ||
| Solution.ts | ||
README_EN.md
| comments | difficulty | edit_url | tags | |||||
|---|---|---|---|---|---|---|---|---|
| true | Medium | https://github.com/doocs/leetcode/edit/main/solution/0900-0999/0918.Maximum%20Sum%20Circular%20Subarray/README_EN.md |
|
918. Maximum Sum Circular Subarray
Description
Given a circular integer array nums of length n, return the maximum possible sum of a non-empty subarray of nums.
A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i] is nums[(i + 1) % n] and the previous element of nums[i] is nums[(i - 1 + n) % n].
A subarray may only include each element of the fixed buffer nums at most once. Formally, for a subarray nums[i], nums[i + 1], ..., nums[j], there does not exist i <= k1, k2 <= j with k1 % n == k2 % n.
Example 1:
Input: nums = [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3.
Example 2:
Input: nums = [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10.
Example 3:
Input: nums = [-3,-2,-3] Output: -2 Explanation: Subarray [-2] has maximum sum -2.
Constraints:
n == nums.length1 <= n <= 3 * 104-3 * 104 <= nums[i] <= 3 * 104
Solutions
Solution 1: Maintain Prefix Maximum
The maximum sum of a circular subarray can be divided into two cases:
- Case 1: The subarray with the maximum sum does not include the circular part, which is the ordinary maximum subarray sum;
- Case 2: The subarray with the maximum sum includes the circular part, which can be transformed into: the total sum of the array minus the minimum subarray sum.
Therefore, we maintain the following variables:
- The minimum prefix sum
pmi, initially0; - The maximum prefix sum
pmx, initially-\infty; - The prefix sum
s, initially0; - The minimum subarray sum
smi, initially\infty; - The answer
ans, initially-\infty.
Next, we only need to traverse the array nums. For the current element x we are traversing, we perform the following update operations:
- Update the prefix sum
s = s + x; - Update the answer
ans = \max(ans, s - pmi), which is the answer for Case 1 (the prefix sumsminus the minimum prefix sumpmican give the maximum subarray sum); - Update
smi = \min(smi, s - pmx), which is the minimum subarray sum for Case 2; - Update
pmi = \min(pmi, s), which is the minimum prefix sum; - Update
pmx = \max(pmx, s), which is the maximum prefix sum.
After the traversal, we return the maximum value of ans and s - smi as the answer.
The time complexity is O(n), where n is the length of the array. The space complexity is O(1).
Python3
class Solution:
def maxSubarraySumCircular(self, nums: List[int]) -> int:
pmi, pmx = 0, -inf
ans, s, smi = -inf, 0, inf
for x in nums:
s += x
ans = max(ans, s - pmi)
smi = min(smi, s - pmx)
pmi = min(pmi, s)
pmx = max(pmx, s)
return max(ans, s - smi)
Java
class Solution {
public int maxSubarraySumCircular(int[] nums) {
final int inf = 1 << 30;
int pmi = 0, pmx = -inf;
int ans = -inf, s = 0, smi = inf;
for (int x : nums) {
s += x;
ans = Math.max(ans, s - pmi);
smi = Math.min(smi, s - pmx);
pmi = Math.min(pmi, s);
pmx = Math.max(pmx, s);
}
return Math.max(ans, s - smi);
}
}
C++
class Solution {
public:
int maxSubarraySumCircular(vector<int>& nums) {
const int inf = 1 << 30;
int pmi = 0, pmx = -inf;
int ans = -inf, s = 0, smi = inf;
for (int x : nums) {
s += x;
ans = max(ans, s - pmi);
smi = min(smi, s - pmx);
pmi = min(pmi, s);
pmx = max(pmx, s);
}
return max(ans, s - smi);
}
};
Go
func maxSubarraySumCircular(nums []int) int {
const inf = 1 << 30
pmi, pmx := 0, -inf
ans, s, smi := -inf, 0, inf
for _, x := range nums {
s += x
ans = max(ans, s-pmi)
smi = min(smi, s-pmx)
pmi = min(pmi, s)
pmx = max(pmx, s)
}
return max(ans, s-smi)
}
TypeScript
function maxSubarraySumCircular(nums: number[]): number {
let [pmi, pmx] = [0, -Infinity];
let [ans, s, smi] = [-Infinity, 0, Infinity];
for (const x of nums) {
s += x;
ans = Math.max(ans, s - pmi);
smi = Math.min(smi, s - pmx);
pmi = Math.min(pmi, s);
pmx = Math.max(pmx, s);
}
return Math.max(ans, s - smi);
}