|
…
|
||
|---|---|---|
| .. | ||
| README.md | ||
| README_EN.md | ||
| Solution.cpp | ||
| Solution.go | ||
| Solution.java | ||
| Solution.py | ||
| Solution.ts | ||
README_EN.md
| comments | difficulty | edit_url | rating | source | tags | ||||
|---|---|---|---|---|---|---|---|---|---|
| true | Medium | https://github.com/doocs/leetcode/edit/main/solution/1000-1099/1027.Longest%20Arithmetic%20Subsequence/README_EN.md | 1758 | Weekly Contest 132 Q3 |
|
1027. Longest Arithmetic Subsequence
Description
Given an array nums of integers, return the length of the longest arithmetic subsequence in nums.
Note that:
- A subsequence is an array that can be derived from another array by deleting some or no elements without changing the order of the remaining elements.
- A sequence
seqis arithmetic ifseq[i + 1] - seq[i]are all the same value (for0 <= i < seq.length - 1).
Example 1:
Input: nums = [3,6,9,12] Output: 4 Explanation: The whole array is an arithmetic sequence with steps of length = 3.
Example 2:
Input: nums = [9,4,7,2,10] Output: 3 Explanation: The longest arithmetic subsequence is [4,7,10].
Example 3:
Input: nums = [20,1,15,3,10,5,8] Output: 4 Explanation: The longest arithmetic subsequence is [20,15,10,5].
Constraints:
2 <= nums.length <= 10000 <= nums[i] <= 500
Solutions
Solution 1: Dynamic Programming
We define f[i][j] as the maximum length of the arithmetic sequence ending with nums[i] and having a common difference of j. Initially, f[i][j]=1, that is, each element itself is an arithmetic sequence of length 1.
Since the common difference may be negative, and the maximum difference is
500, we can uniformly add500to the common difference, so the range of the common difference becomes[0, 1000].
Considering f[i], we can enumerate the previous element nums[k] of nums[i], then the common difference j=nums[i]-nums[k]+500, at this time f[i][j]=\max(f[i][j], f[k][j]+1), then we update the answer ans=\max(ans, f[i][j]).
Finally, return the answer.
If initially
f[i][j]=0, then we need to add1to the answer when returning the answer.
The time complexity is O(n \times (d + n)), and the space complexity is O(n \times d). Where n and d are the length of the array nums and the difference between the maximum and minimum values in the array nums, respectively.
Python3
class Solution:
def longestArithSeqLength(self, nums: List[int]) -> int:
n = len(nums)
f = [[1] * 1001 for _ in range(n)]
ans = 0
for i in range(1, n):
for k in range(i):
j = nums[i] - nums[k] + 500
f[i][j] = max(f[i][j], f[k][j] + 1)
ans = max(ans, f[i][j])
return ans
Java
class Solution {
public int longestArithSeqLength(int[] nums) {
int n = nums.length;
int ans = 0;
int[][] f = new int[n][1001];
for (int i = 1; i < n; ++i) {
for (int k = 0; k < i; ++k) {
int j = nums[i] - nums[k] + 500;
f[i][j] = Math.max(f[i][j], f[k][j] + 1);
ans = Math.max(ans, f[i][j]);
}
}
return ans + 1;
}
}
C++
class Solution {
public:
int longestArithSeqLength(vector<int>& nums) {
int n = nums.size();
int f[n][1001];
memset(f, 0, sizeof(f));
int ans = 0;
for (int i = 1; i < n; ++i) {
for (int k = 0; k < i; ++k) {
int j = nums[i] - nums[k] + 500;
f[i][j] = max(f[i][j], f[k][j] + 1);
ans = max(ans, f[i][j]);
}
}
return ans + 1;
}
};
Go
func longestArithSeqLength(nums []int) int {
n := len(nums)
f := make([][]int, n)
for i := range f {
f[i] = make([]int, 1001)
}
ans := 0
for i := 1; i < n; i++ {
for k := 0; k < i; k++ {
j := nums[i] - nums[k] + 500
f[i][j] = max(f[i][j], f[k][j]+1)
ans = max(ans, f[i][j])
}
}
return ans + 1
}
TypeScript
function longestArithSeqLength(nums: number[]): number {
const n = nums.length;
let ans = 0;
const f: number[][] = Array.from({ length: n }, () => new Array(1001).fill(0));
for (let i = 1; i < n; ++i) {
for (let k = 0; k < i; ++k) {
const j = nums[i] - nums[k] + 500;
f[i][j] = Math.max(f[i][j], f[k][j] + 1);
ans = Math.max(ans, f[i][j]);
}
}
return ans + 1;
}