|
…
|
||
|---|---|---|
| .. | ||
| README.md | ||
| README_EN.md | ||
| Solution.cpp | ||
| Solution.go | ||
| Solution.java | ||
| Solution.py | ||
| Solution.rs | ||
| Solution.ts | ||
README_EN.md
| comments | difficulty | edit_url | rating | source | tags | |||
|---|---|---|---|---|---|---|---|---|
| true | Medium | https://github.com/doocs/leetcode/edit/main/solution/2000-2099/2028.Find%20Missing%20Observations/README_EN.md | 1444 | Weekly Contest 261 Q2 |
|
2028. Find Missing Observations
Description
You have observations of n + m 6-sided dice rolls with each face numbered from 1 to 6. n of the observations went missing, and you only have the observations of m rolls. Fortunately, you have also calculated the average value of the n + m rolls.
You are given an integer array rolls of length m where rolls[i] is the value of the ith observation. You are also given the two integers mean and n.
Return an array of length n containing the missing observations such that the average value of the n + m rolls is exactly mean. If there are multiple valid answers, return any of them. If no such array exists, return an empty array.
The average value of a set of k numbers is the sum of the numbers divided by k.
Note that mean is an integer, so the sum of the n + m rolls should be divisible by n + m.
Example 1:
Input: rolls = [3,2,4,3], mean = 4, n = 2 Output: [6,6] Explanation: The mean of all n + m rolls is (3 + 2 + 4 + 3 + 6 + 6) / 6 = 4.
Example 2:
Input: rolls = [1,5,6], mean = 3, n = 4 Output: [2,3,2,2] Explanation: The mean of all n + m rolls is (1 + 5 + 6 + 2 + 3 + 2 + 2) / 7 = 3.
Example 3:
Input: rolls = [1,2,3,4], mean = 6, n = 4 Output: [] Explanation: It is impossible for the mean to be 6 no matter what the 4 missing rolls are.
Constraints:
m == rolls.length1 <= n, m <= 1051 <= rolls[i], mean <= 6
Solutions
Solution 1: Construction
According to the problem description, the sum of all numbers is (n + m) \times \textit{mean}, and the sum of known numbers is \sum_{i=0}^{m-1} \textit{rolls}[i]. Therefore, the sum of the missing numbers is s = (n + m) \times \textit{mean} - \sum_{i=0}^{m-1} \textit{rolls}[i].
If s \gt n \times 6 or s \lt n, it means there is no answer that satisfies the conditions, so we return an empty array.
Otherwise, we can evenly distribute s to n numbers, that is, the value of each number is s / n, and the value of s \bmod n numbers is increased by 1.
The time complexity is O(n + m), where n and m are the number of missing numbers and known numbers, respectively. Ignoring the space consumption of the answer, the space complexity is O(1).
Python3
class Solution:
def missingRolls(self, rolls: List[int], mean: int, n: int) -> List[int]:
m = len(rolls)
s = (n + m) * mean - sum(rolls)
if s > n * 6 or s < n:
return []
ans = [s // n] * n
for i in range(s % n):
ans[i] += 1
return ans
Java
class Solution {
public int[] missingRolls(int[] rolls, int mean, int n) {
int m = rolls.length;
int s = (n + m) * mean;
for (int v : rolls) {
s -= v;
}
if (s > n * 6 || s < n) {
return new int[0];
}
int[] ans = new int[n];
Arrays.fill(ans, s / n);
for (int i = 0; i < s % n; ++i) {
++ans[i];
}
return ans;
}
}
C++
class Solution {
public:
vector<int> missingRolls(vector<int>& rolls, int mean, int n) {
int m = rolls.size();
int s = (n + m) * mean - accumulate(rolls.begin(), rolls.end(), 0);
if (s > n * 6 || s < n) {
return {};
}
vector<int> ans(n, s / n);
for (int i = 0; i < s % n; ++i) {
++ans[i];
}
return ans;
}
};
Go
func missingRolls(rolls []int, mean int, n int) []int {
m := len(rolls)
s := (n + m) * mean
for _, v := range rolls {
s -= v
}
if s > n*6 || s < n {
return []int{}
}
ans := make([]int, n)
for i, j := 0, 0; i < n; i, j = i+1, j+1 {
ans[i] = s / n
if j < s%n {
ans[i]++
}
}
return ans
}
TypeScript
function missingRolls(rolls: number[], mean: number, n: number): number[] {
const m = rolls.length;
const s = (n + m) * mean - rolls.reduce((a, b) => a + b, 0);
if (s > n * 6 || s < n) {
return [];
}
const ans: number[] = Array(n).fill((s / n) | 0);
for (let i = 0; i < s % n; ++i) {
ans[i]++;
}
return ans;
}
Rust
impl Solution {
pub fn missing_rolls(rolls: Vec<i32>, mean: i32, n: i32) -> Vec<i32> {
let m = rolls.len() as i32;
let s = (n + m) * mean - rolls.iter().sum::<i32>();
if s > n * 6 || s < n {
return vec![];
}
let mut ans = vec![s / n; n as usize];
for i in 0..(s % n) as usize {
ans[i] += 1;
}
ans
}
}