|
…
|
||
|---|---|---|
| .. | ||
| README.md | ||
| README_EN.md | ||
| Solution.cpp | ||
| Solution.go | ||
| Solution.java | ||
| Solution.py | ||
| Solution.ts | ||
README_EN.md
| comments | difficulty | edit_url | rating | source | tags | ||
|---|---|---|---|---|---|---|---|
| true | Medium | https://github.com/doocs/leetcode/edit/main/solution/3200-3299/3290.Maximum%20Multiplication%20Score/README_EN.md | 1692 | Weekly Contest 415 Q2 |
|
3290. Maximum Multiplication Score
Description
You are given an integer array a of size 4 and another integer array b of size at least 4.
You need to choose 4 indices i0, i1, i2, and i3 from the array b such that i0 < i1 < i2 < i3. Your score will be equal to the value a[0] * b[i0] + a[1] * b[i1] + a[2] * b[i2] + a[3] * b[i3].
Return the maximum score you can achieve.
Example 1:
Input: a = [3,2,5,6], b = [2,-6,4,-5,-3,2,-7]
Output: 26
Explanation:
We can choose the indices 0, 1, 2, and 5. The score will be 3 * 2 + 2 * (-6) + 5 * 4 + 6 * 2 = 26.
Example 2:
Input: a = [-1,4,5,-2], b = [-5,-1,-3,-2,-4]
Output: -1
Explanation:
We can choose the indices 0, 1, 3, and 4. The score will be (-1) * (-5) + 4 * (-1) + 5 * (-2) + (-2) * (-4) = -1.
Constraints:
a.length == 44 <= b.length <= 105-105 <= a[i], b[i] <= 105
Solutions
Solution 1: Memoization
We design a function \textit{dfs}(i, j), which represents the maximum score that can be obtained starting from the i-th element of array a and the j-th element of array b. Then the answer is \textit{dfs}(0, 0).
The function \textit{dfs}(i, j) is calculated as follows:
- If
j \geq \text{len}(b), it means arraybhas been completely traversed. At this point, if arrayahas also been completely traversed, return0; otherwise, return negative infinity. - If
i \geq \text{len}(a), it means arrayahas been completely traversed. Return0. - Otherwise, we can either skip the
j-th element of arrayband move to the next element, i.e.,\textit{dfs}(i, j + 1); or we can choose thej-th element of arrayb, in which case the score isa[i] \times b[j]plus\textit{dfs}(i + 1, j + 1). We take the maximum of these two values as the return value of\textit{dfs}(i, j).
We can use memoization to avoid redundant calculations.
The time complexity is O(m \times n), and the space complexity is O(m \times n). Here, m and n are the lengths of arrays a and b, respectively.
Python3
class Solution:
def maxScore(self, a: List[int], b: List[int]) -> int:
@cache
def dfs(i: int, j: int) -> int:
if j >= len(b):
return 0 if i >= len(a) else -inf
if i >= len(a):
return 0
return max(dfs(i, j + 1), a[i] * b[j] + dfs(i + 1, j + 1))
return dfs(0, 0)
Java
class Solution {
private Long[][] f;
private int[] a;
private int[] b;
public long maxScore(int[] a, int[] b) {
f = new Long[a.length][b.length];
this.a = a;
this.b = b;
return dfs(0, 0);
}
private long dfs(int i, int j) {
if (j >= b.length) {
return i >= a.length ? 0 : Long.MIN_VALUE / 2;
}
if (i >= a.length) {
return 0;
}
if (f[i][j] != null) {
return f[i][j];
}
return f[i][j] = Math.max(dfs(i, j + 1), 1L * a[i] * b[j] + dfs(i + 1, j + 1));
}
}
C++
class Solution {
public:
long long maxScore(vector<int>& a, vector<int>& b) {
int m = a.size(), n = b.size();
long long f[m][n];
memset(f, -1, sizeof(f));
auto dfs = [&](this auto&& dfs, int i, int j) -> long long {
if (j >= n) {
return i >= m ? 0 : LLONG_MIN / 2;
}
if (i >= m) {
return 0;
}
if (f[i][j] != -1) {
return f[i][j];
}
return f[i][j] = max(dfs(i, j + 1), 1LL * a[i] * b[j] + dfs(i + 1, j + 1));
};
return dfs(0, 0);
}
};
Go
func maxScore(a []int, b []int) int64 {
m, n := len(a), len(b)
f := make([][]int64, m)
for i := range f {
f[i] = make([]int64, n)
for j := range f[i] {
f[i][j] = -1
}
}
var dfs func(i, j int) int64
dfs = func(i, j int) int64 {
if j >= n {
if i >= m {
return 0
}
return math.MinInt64 / 2
}
if i >= m {
return 0
}
if f[i][j] != -1 {
return f[i][j]
}
f[i][j] = max(dfs(i, j+1), int64(a[i])*int64(b[j])+dfs(i+1, j+1))
return f[i][j]
}
return dfs(0, 0)
}
TypeScript
function maxScore(a: number[], b: number[]): number {
const [m, n] = [a.length, b.length];
const f: number[][] = Array.from({ length: m }, () => Array(n).fill(-1));
const dfs = (i: number, j: number): number => {
if (j >= n) {
return i >= m ? 0 : -Infinity;
}
if (i >= m) {
return 0;
}
if (f[i][j] !== -1) {
return f[i][j];
}
return (f[i][j] = Math.max(dfs(i, j + 1), a[i] * b[j] + dfs(i + 1, j + 1)));
};
return dfs(0, 0);
}