Import forked x509 for parsing of CSRs with empty integers (#2088)

Part of #2080.

This change vendors `crypto/x509`, `crypto/x509/pkix`, and `encoding/asn1` from  1d5f6a765d. That commit is a direct child of the Go 1.5.4 release tag, so it contains the same code as the current Go version we are using. In that commit I rewrote imports in those packages so they depend on each other internally rather than calling out to the standard library, which would cause type disagreements.

I changed the imports in each place where we're parsing CSRs, and imported under a different name `oldx509`, both to avoid collisions and make it clear what's going on. Places that only use `x509` to parse certificates are not changed, and will use the current standard library.

This will unblock us from moving to Go 1.6, and subsequently Go 1.7.
This commit is contained in:
Jacob Hoffman-Andrews 2016-07-28 10:38:33 -04:00 committed by Daniel McCarney
parent 2a89063fce
commit 474b76ad95
40 changed files with 10883 additions and 62 deletions

15
Godeps/Godeps.json generated
View File

@ -135,6 +135,21 @@
"Comment": "2.0.0-10-ga109a23",
"Rev": "a109a231e10a089285a0aac0fd03c8a083975758"
},
{
"ImportPath": "github.com/letsencrypt/go/src/crypto/x509",
"Comment": "go1.5.4-1-g1d5f6a7",
"Rev": "1d5f6a765da3eb45fc195fcdb2f2a5e872d6cbb2"
},
{
"ImportPath": "github.com/letsencrypt/go/src/crypto/x509/pkix",
"Comment": "go1.5.4-1-g1d5f6a7",
"Rev": "1d5f6a765da3eb45fc195fcdb2f2a5e872d6cbb2"
},
{
"ImportPath": "github.com/letsencrypt/go/src/encoding/asn1",
"Comment": "go1.5.4-1-g1d5f6a7",
"Rev": "1d5f6a765da3eb45fc195fcdb2f2a5e872d6cbb2"
},
{
"ImportPath": "github.com/letsencrypt/pkcs11key",
"Rev": "bda7cf218ae2225f745ead23f9b65901dfebbf45"

View File

@ -7,7 +7,6 @@ import (
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"encoding/asn1"
"encoding/base64"
"encoding/hex"
"encoding/json"
@ -33,6 +32,8 @@ import (
csrlib "github.com/letsencrypt/boulder/csr"
"github.com/letsencrypt/boulder/goodkey"
blog "github.com/letsencrypt/boulder/log"
oldx509 "github.com/letsencrypt/go/src/crypto/x509"
"github.com/letsencrypt/go/src/encoding/asn1"
)
// Miscellaneous PKIX OIDs that we need to refer to
@ -271,7 +272,7 @@ func (ca *CertificateAuthorityImpl) noteSignError(err error) {
// Any other value will result in an error.
//
// Other requested extensions are silently ignored.
func (ca *CertificateAuthorityImpl) extensionsFromCSR(csr *x509.CertificateRequest) ([]signer.Extension, error) {
func (ca *CertificateAuthorityImpl) extensionsFromCSR(csr *oldx509.CertificateRequest) ([]signer.Extension, error) {
extensions := []signer.Extension{}
extensionSeen := map[string]bool{}
@ -373,7 +374,7 @@ func (ca *CertificateAuthorityImpl) GenerateOCSP(ctx context.Context, xferObj co
// enforcing all policies. Names (domains) in the CertificateRequest will be
// lowercased before storage.
// Currently it will always sign with the defaultIssuer.
func (ca *CertificateAuthorityImpl) IssueCertificate(ctx context.Context, csr x509.CertificateRequest, regID int64) (core.Certificate, error) {
func (ca *CertificateAuthorityImpl) IssueCertificate(ctx context.Context, csr oldx509.CertificateRequest, regID int64) (core.Certificate, error) {
emptyCert := core.Certificate{}
if err := csrlib.VerifyCSR(&csr, ca.maxNames, &ca.keyPolicy, ca.PA, ca.forceCNFromSAN, regID); err != nil {

View File

@ -24,6 +24,7 @@ import (
"github.com/letsencrypt/boulder/mocks"
"github.com/letsencrypt/boulder/policy"
"github.com/letsencrypt/boulder/test"
oldx509 "github.com/letsencrypt/go/src/crypto/x509"
)
var (
@ -288,7 +289,7 @@ func TestIssueCertificate(t *testing.T) {
sa := &mockSA{}
ca.SA = sa
csr, _ := x509.ParseCertificateRequest(CNandSANCSR)
csr, _ := oldx509.ParseCertificateRequest(CNandSANCSR)
// Sign CSR
issuedCert, err := ca.IssueCertificate(ctx, *csr, 1001)
@ -348,7 +349,7 @@ func TestIssueCertificateMultipleIssuers(t *testing.T) {
ca.PA = testCtx.pa
ca.SA = &mockSA{}
csr, _ := x509.ParseCertificateRequest(CNandSANCSR)
csr, _ := oldx509.ParseCertificateRequest(CNandSANCSR)
issuedCert, err := ca.IssueCertificate(ctx, *csr, 1001)
test.AssertNotError(t, err, "Failed to sign certificate")
@ -373,7 +374,7 @@ func TestOCSP(t *testing.T) {
ca.PA = testCtx.pa
ca.SA = &mockSA{}
csr, _ := x509.ParseCertificateRequest(CNandSANCSR)
csr, _ := oldx509.ParseCertificateRequest(CNandSANCSR)
cert, err := ca.IssueCertificate(ctx, *csr, 1001)
test.AssertNotError(t, err, "Failed to issue")
parsedCert, err := x509.ParseCertificate(cert.DER)
@ -469,7 +470,7 @@ func TestNoHostnames(t *testing.T) {
ca.PA = testCtx.pa
ca.SA = &mockSA{}
csr, _ := x509.ParseCertificateRequest(NoNamesCSR)
csr, _ := oldx509.ParseCertificateRequest(NoNamesCSR)
_, err = ca.IssueCertificate(ctx, *csr, 1001)
test.AssertError(t, err, "Issued certificate with no names")
_, ok := err.(core.MalformedRequestError)
@ -491,7 +492,7 @@ func TestRejectTooManyNames(t *testing.T) {
ca.SA = &mockSA{}
// Test that the CA rejects a CSR with too many names
csr, _ := x509.ParseCertificateRequest(TooManyNameCSR)
csr, _ := oldx509.ParseCertificateRequest(TooManyNameCSR)
_, err = ca.IssueCertificate(ctx, *csr, 1001)
test.AssertError(t, err, "Issued certificate with too many names")
_, ok := err.(core.MalformedRequestError)
@ -518,7 +519,7 @@ func TestRejectValidityTooLong(t *testing.T) {
test.AssertNotError(t, err, "Failed to parse time")
testCtx.fc.Set(future)
// Test that the CA rejects CSRs that would expire after the intermediate cert
csr, _ := x509.ParseCertificateRequest(NoCNCSR)
csr, _ := oldx509.ParseCertificateRequest(NoCNCSR)
_, err = ca.IssueCertificate(ctx, *csr, 1)
test.AssertError(t, err, "Cannot issue a certificate that expires after the intermediate certificate")
_, ok := err.(core.InternalServerError)
@ -539,7 +540,7 @@ func TestShortKey(t *testing.T) {
ca.SA = &mockSA{}
// Test that the CA rejects CSRs that would expire after the intermediate cert
csr, _ := x509.ParseCertificateRequest(ShortKeyCSR)
csr, _ := oldx509.ParseCertificateRequest(ShortKeyCSR)
_, err = ca.IssueCertificate(ctx, *csr, 1001)
test.AssertError(t, err, "Issued a certificate with too short a key.")
_, ok := err.(core.MalformedRequestError)
@ -560,7 +561,7 @@ func TestAllowNoCN(t *testing.T) {
ca.PA = testCtx.pa
ca.SA = &mockSA{}
csr, err := x509.ParseCertificateRequest(NoCNCSR)
csr, err := oldx509.ParseCertificateRequest(NoCNCSR)
test.AssertNotError(t, err, "Couldn't parse CSR")
issuedCert, err := ca.IssueCertificate(ctx, *csr, 1001)
test.AssertNotError(t, err, "Failed to sign certificate")
@ -600,7 +601,7 @@ func TestLongCommonName(t *testing.T) {
ca.PA = testCtx.pa
ca.SA = &mockSA{}
csr, _ := x509.ParseCertificateRequest(LongCNCSR)
csr, _ := oldx509.ParseCertificateRequest(LongCNCSR)
_, err = ca.IssueCertificate(ctx, *csr, 1001)
test.AssertError(t, err, "Issued a certificate with a CN over 64 bytes.")
_, ok := err.(core.MalformedRequestError)
@ -621,8 +622,8 @@ func TestWrongSignature(t *testing.T) {
ca.PA = testCtx.pa
ca.SA = &mockSA{}
// x509.ParseCertificateRequest() does not check for invalid signatures...
csr, _ := x509.ParseCertificateRequest(WrongSignatureCSR)
// oldx509.ParseCertificateRequest() does not check for invalid signatures...
csr, _ := oldx509.ParseCertificateRequest(WrongSignatureCSR)
_, err = ca.IssueCertificate(ctx, *csr, 1001)
if err == nil {
@ -653,7 +654,7 @@ func TestProfileSelection(t *testing.T) {
}
for _, testCase := range testCases {
csr, err := x509.ParseCertificateRequest(testCase.CSR)
csr, err := oldx509.ParseCertificateRequest(testCase.CSR)
test.AssertNotError(t, err, "Cannot parse CSR")
// Sign CSR
@ -670,6 +671,7 @@ func TestProfileSelection(t *testing.T) {
}
func countMustStaple(t *testing.T, cert *x509.Certificate) (count int) {
oidTLSFeature := asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 1, 24}
for _, ext := range cert.Extensions {
if ext.Id.Equal(oidTLSFeature) {
test.Assert(t, !ext.Critical, "Extension was marked critical")
@ -694,19 +696,19 @@ func TestExtensions(t *testing.T) {
ca.PA = testCtx.pa
ca.SA = &mockSA{}
mustStapleCSR, err := x509.ParseCertificateRequest(MustStapleCSR)
mustStapleCSR, err := oldx509.ParseCertificateRequest(MustStapleCSR)
test.AssertNotError(t, err, "Error parsing MustStapleCSR")
duplicateMustStapleCSR, err := x509.ParseCertificateRequest(DuplicateMustStapleCSR)
duplicateMustStapleCSR, err := oldx509.ParseCertificateRequest(DuplicateMustStapleCSR)
test.AssertNotError(t, err, "Error parsing DuplicateMustStapleCSR")
tlsFeatureUnknownCSR, err := x509.ParseCertificateRequest(TLSFeatureUnknownCSR)
tlsFeatureUnknownCSR, err := oldx509.ParseCertificateRequest(TLSFeatureUnknownCSR)
test.AssertNotError(t, err, "Error parsing TLSFeatureUnknownCSR")
unsupportedExtensionCSR, err := x509.ParseCertificateRequest(UnsupportedExtensionCSR)
unsupportedExtensionCSR, err := oldx509.ParseCertificateRequest(UnsupportedExtensionCSR)
test.AssertNotError(t, err, "Error parsing UnsupportedExtensionCSR")
sign := func(csr *x509.CertificateRequest) *x509.Certificate {
sign := func(csr *oldx509.CertificateRequest) *x509.Certificate {
coreCert, err := ca.IssueCertificate(ctx, *csr, 1001)
test.AssertNotError(t, err, "Failed to issue")
cert, err := x509.ParseCertificate(coreCert.DER)

View File

@ -1,7 +1,6 @@
package main
import (
"crypto/x509"
"database/sql"
"errors"
"testing"
@ -20,13 +19,14 @@ import (
"github.com/letsencrypt/boulder/sa/satest"
"github.com/letsencrypt/boulder/test"
"github.com/letsencrypt/boulder/test/vars"
oldx509 "github.com/letsencrypt/go/src/crypto/x509"
)
var ctx = context.Background()
type mockCA struct{}
func (ca *mockCA) IssueCertificate(_ context.Context, csr x509.CertificateRequest, regID int64) (core.Certificate, error) {
func (ca *mockCA) IssueCertificate(_ context.Context, csr oldx509.CertificateRequest, regID int64) (core.Certificate, error) {
return core.Certificate{}, nil
}

View File

@ -9,6 +9,8 @@ import (
"golang.org/x/net/context"
jose "github.com/square/go-jose"
oldx509 "github.com/letsencrypt/go/src/crypto/x509"
)
// A WebFrontEnd object supplies methods that can be hooked into
@ -75,7 +77,7 @@ type RegistrationAuthority interface {
// CertificateAuthority defines the public interface for the Boulder CA
type CertificateAuthority interface {
// [RegistrationAuthority]
IssueCertificate(ctx context.Context, csr x509.CertificateRequest, regID int64) (Certificate, error)
IssueCertificate(ctx context.Context, csr oldx509.CertificateRequest, regID int64) (Certificate, error)
GenerateOCSP(ctx context.Context, ocspReq OCSPSigningRequest) ([]byte, error)
}

View File

@ -2,7 +2,6 @@ package core
import (
"crypto"
"crypto/x509"
"encoding/base64"
"encoding/json"
"fmt"
@ -11,6 +10,7 @@ import (
"time"
"github.com/letsencrypt/boulder/probs"
oldx509 "github.com/letsencrypt/go/src/crypto/x509"
"github.com/square/go-jose"
)
@ -103,8 +103,8 @@ type AcmeIdentifier struct {
// This data is unmarshalled from JSON by way of RawCertificateRequest, which
// represents the actual structure received from the client.
type CertificateRequest struct {
CSR *x509.CertificateRequest // The CSR
Bytes []byte // The original bytes of the CSR, for logging.
CSR *oldx509.CertificateRequest // The CSR
Bytes []byte // The original bytes of the CSR, for logging.
}
type RawCertificateRequest struct {
@ -118,7 +118,7 @@ func (cr *CertificateRequest) UnmarshalJSON(data []byte) error {
return err
}
csr, err := x509.ParseCertificateRequest(raw.CSR)
csr, err := oldx509.ParseCertificateRequest(raw.CSR)
if err != nil {
return err
}

View File

@ -2,13 +2,13 @@ package csr
import (
"crypto"
"crypto/x509"
"errors"
"fmt"
"strings"
"github.com/letsencrypt/boulder/core"
"github.com/letsencrypt/boulder/goodkey"
oldx509 "github.com/letsencrypt/go/src/crypto/x509"
)
// maxCNLength is the maximum length allowed for the common name as specified in RFC 5280
@ -21,19 +21,19 @@ const maxCNLength = 64
//
// SHA1WithRSA is allowed because there's still a fair bit of it
// out there, but we should try to remove it soon.
var badSignatureAlgorithms = map[x509.SignatureAlgorithm]bool{
x509.UnknownSignatureAlgorithm: true,
x509.MD2WithRSA: true,
x509.MD5WithRSA: true,
x509.DSAWithSHA1: true,
x509.DSAWithSHA256: true,
x509.ECDSAWithSHA1: true,
var badSignatureAlgorithms = map[oldx509.SignatureAlgorithm]bool{
oldx509.UnknownSignatureAlgorithm: true,
oldx509.MD2WithRSA: true,
oldx509.MD5WithRSA: true,
oldx509.DSAWithSHA1: true,
oldx509.DSAWithSHA256: true,
oldx509.ECDSAWithSHA1: true,
}
// VerifyCSR checks the validity of a x509.CertificateRequest. Before doing checks it normalizes
// the CSR which lowers the case of DNS names and subject CN, and if forceCNFromSAN is true it
// will hoist a DNS name into the CN if it is empty.
func VerifyCSR(csr *x509.CertificateRequest, maxNames int, keyPolicy *goodkey.KeyPolicy, pa core.PolicyAuthority, forceCNFromSAN bool, regID int64) error {
func VerifyCSR(csr *oldx509.CertificateRequest, maxNames int, keyPolicy *goodkey.KeyPolicy, pa core.PolicyAuthority, forceCNFromSAN bool, regID int64) error {
normalizeCSR(csr, forceCNFromSAN)
key, ok := csr.PublicKey.(crypto.PublicKey)
if !ok {
@ -76,7 +76,7 @@ func VerifyCSR(csr *x509.CertificateRequest, maxNames int, keyPolicy *goodkey.Ke
// normalizeCSR deduplicates and lowers the case of dNSNames and the subject CN.
// If forceCNFromSAN is true it will also hoist a dNSName into the CN if it is empty.
func normalizeCSR(csr *x509.CertificateRequest, forceCNFromSAN bool) {
func normalizeCSR(csr *oldx509.CertificateRequest, forceCNFromSAN bool) {
if forceCNFromSAN && csr.Subject.CommonName == "" {
if len(csr.DNSNames) > 0 {
csr.Subject.CommonName = csr.DNSNames[0]

View File

@ -3,8 +3,6 @@ package csr
import (
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"crypto/x509/pkix"
"errors"
"strings"
"testing"
@ -12,6 +10,8 @@ import (
"github.com/letsencrypt/boulder/core"
"github.com/letsencrypt/boulder/goodkey"
"github.com/letsencrypt/boulder/test"
oldx509 "github.com/letsencrypt/go/src/crypto/x509"
"github.com/letsencrypt/go/src/crypto/x509/pkix"
)
var testingPolicy = &goodkey.KeyPolicy{
@ -36,25 +36,25 @@ func (pa *mockPA) WillingToIssue(id core.AcmeIdentifier) error {
func TestVerifyCSR(t *testing.T) {
private, err := rsa.GenerateKey(rand.Reader, 2048)
test.AssertNotError(t, err, "error generating test key")
signedReqBytes, err := x509.CreateCertificateRequest(rand.Reader, &x509.CertificateRequest{PublicKey: private.PublicKey, SignatureAlgorithm: x509.SHA256WithRSA}, private)
signedReqBytes, err := oldx509.CreateCertificateRequest(rand.Reader, &oldx509.CertificateRequest{PublicKey: private.PublicKey, SignatureAlgorithm: oldx509.SHA256WithRSA}, private)
test.AssertNotError(t, err, "error generating test CSR")
signedReq, err := x509.ParseCertificateRequest(signedReqBytes)
signedReq, err := oldx509.ParseCertificateRequest(signedReqBytes)
test.AssertNotError(t, err, "error parsing test CSR")
brokenSignedReq := new(x509.CertificateRequest)
brokenSignedReq := new(oldx509.CertificateRequest)
*brokenSignedReq = *signedReq
brokenSignedReq.Signature = []byte{1, 1, 1, 1}
signedReqWithHosts := new(x509.CertificateRequest)
signedReqWithHosts := new(oldx509.CertificateRequest)
*signedReqWithHosts = *signedReq
signedReqWithHosts.DNSNames = []string{"a.com", "b.com"}
signedReqWithLongCN := new(x509.CertificateRequest)
signedReqWithLongCN := new(oldx509.CertificateRequest)
*signedReqWithLongCN = *signedReq
signedReqWithLongCN.Subject.CommonName = strings.Repeat("a", maxCNLength+1)
signedReqWithBadName := new(x509.CertificateRequest)
signedReqWithBadName := new(oldx509.CertificateRequest)
*signedReqWithBadName = *signedReq
signedReqWithBadName.DNSNames = []string{"bad-name.com"}
cases := []struct {
csr *x509.CertificateRequest
csr *oldx509.CertificateRequest
maxNames int
keyPolicy *goodkey.KeyPolicy
pa core.PolicyAuthority
@ -62,7 +62,7 @@ func TestVerifyCSR(t *testing.T) {
expectedError error
}{
{
&x509.CertificateRequest{},
&oldx509.CertificateRequest{},
0,
testingPolicy,
&mockPA{},
@ -70,7 +70,7 @@ func TestVerifyCSR(t *testing.T) {
errors.New("invalid public key in CSR"),
},
{
&x509.CertificateRequest{PublicKey: private.PublicKey},
&oldx509.CertificateRequest{PublicKey: private.PublicKey},
1,
testingPolicy,
&mockPA{},
@ -127,37 +127,37 @@ func TestVerifyCSR(t *testing.T) {
func TestNormalizeCSR(t *testing.T) {
cases := []struct {
csr *x509.CertificateRequest
csr *oldx509.CertificateRequest
forceCN bool
expectedCN string
expectedNames []string
}{
{
&x509.CertificateRequest{DNSNames: []string{"a.com"}},
&oldx509.CertificateRequest{DNSNames: []string{"a.com"}},
true,
"a.com",
[]string{"a.com"},
},
{
&x509.CertificateRequest{Subject: pkix.Name{CommonName: "A.com"}, DNSNames: []string{"a.com"}},
&oldx509.CertificateRequest{Subject: pkix.Name{CommonName: "A.com"}, DNSNames: []string{"a.com"}},
true,
"a.com",
[]string{"a.com"},
},
{
&x509.CertificateRequest{DNSNames: []string{"a.com"}},
&oldx509.CertificateRequest{DNSNames: []string{"a.com"}},
false,
"",
[]string{"a.com"},
},
{
&x509.CertificateRequest{DNSNames: []string{"a.com", "a.com"}},
&oldx509.CertificateRequest{DNSNames: []string{"a.com", "a.com"}},
false,
"",
[]string{"a.com"},
},
{
&x509.CertificateRequest{Subject: pkix.Name{CommonName: "A.com"}, DNSNames: []string{"B.com"}},
&oldx509.CertificateRequest{Subject: pkix.Name{CommonName: "A.com"}, DNSNames: []string{"B.com"}},
false,
"a.com",
[]string{"a.com", "b.com"},

View File

@ -8,6 +8,7 @@ import (
"golang.org/x/net/context"
"github.com/letsencrypt/boulder/core"
oldx509 "github.com/letsencrypt/go/src/crypto/x509"
)
// MockCA is a mock of a CA that always returns the cert from PEM in response to
@ -17,7 +18,7 @@ type MockCA struct {
}
// IssueCertificate is a mock
func (ca *MockCA) IssueCertificate(ctx context.Context, csr x509.CertificateRequest, regID int64) (core.Certificate, error) {
func (ca *MockCA) IssueCertificate(ctx context.Context, csr oldx509.CertificateRequest, regID int64) (core.Certificate, error) {
if ca.PEM == nil {
return core.Certificate{}, fmt.Errorf("MockCA's PEM field must be set before calling IssueCertificate")
}

View File

@ -28,6 +28,7 @@ import (
blog "github.com/letsencrypt/boulder/log"
"github.com/letsencrypt/boulder/ratelimit"
vaPB "github.com/letsencrypt/boulder/va/proto"
oldx509 "github.com/letsencrypt/go/src/crypto/x509"
)
// Note: the issuanceExpvar must be a global. If it is a member of the RA, or
@ -440,7 +441,7 @@ func (ra *RegistrationAuthorityImpl) NewAuthorization(ctx context.Context, reque
// * IsCA is false
// * ExtKeyUsage only contains ExtKeyUsageServerAuth & ExtKeyUsageClientAuth
// * Subject only contains CommonName & Names
func (ra *RegistrationAuthorityImpl) MatchesCSR(cert core.Certificate, csr *x509.CertificateRequest) (err error) {
func (ra *RegistrationAuthorityImpl) MatchesCSR(cert core.Certificate, csr *oldx509.CertificateRequest) (err error) {
parsedCertificate, err := x509.ParseCertificate([]byte(cert.DER))
if err != nil {
return

View File

@ -33,6 +33,7 @@ import (
"github.com/letsencrypt/boulder/test"
"github.com/letsencrypt/boulder/test/vars"
vaPB "github.com/letsencrypt/boulder/va/proto"
oldx509 "github.com/letsencrypt/go/src/crypto/x509"
)
type DummyValidationAuthority struct {
@ -115,7 +116,7 @@ var (
ResponseIndex = 0
ExampleCSR = &x509.CertificateRequest{}
ExampleCSR = &oldx509.CertificateRequest{}
// These values are populated by the tests as we go
url0, _ = url.Parse("http://acme.invalid/authz/60p2Dc_XmUB2UUJBV4wYkF7BJbPD9KlDnUL3SmFMuTE?challenge=0")
@ -231,7 +232,7 @@ func initAuthorities(t *testing.T) (*DummyValidationAuthority, *sa.SQLStorageAut
}
block, _ := pem.Decode(CSRPEM)
ExampleCSR, _ = x509.ParseCertificateRequest(block.Bytes)
ExampleCSR, _ = oldx509.ParseCertificateRequest(block.Bytes)
Registration, _ = ssa.NewRegistration(ctx, core.Registration{
Key: AccountKeyA,
@ -759,7 +760,7 @@ func TestCertificateKeyNotEqualAccountKey(t *testing.T) {
}
csrBytes, err := x509.CreateCertificateRequest(rand.Reader, &csr, AccountPrivateKey.Key)
test.AssertNotError(t, err, "Failed to sign CSR")
parsedCSR, err := x509.ParseCertificateRequest(csrBytes)
parsedCSR, err := oldx509.ParseCertificateRequest(csrBytes)
test.AssertNotError(t, err, "Failed to parse CSR")
err = sa.FinalizeAuthorization(ctx, authz)
test.AssertNotError(t, err, "Could not store test data")

View File

@ -17,6 +17,7 @@ import (
blog "github.com/letsencrypt/boulder/log"
"github.com/letsencrypt/boulder/probs"
vaPB "github.com/letsencrypt/boulder/va/proto"
oldx509 "github.com/letsencrypt/go/src/crypto/x509"
)
// This file defines RPC wrappers around the ${ROLE}Impl classes,
@ -649,7 +650,7 @@ func NewCertificateAuthorityServer(rpc Server, impl core.CertificateAuthority) (
return
}
csr, err := x509.ParseCertificateRequest(icReq.Bytes)
csr, err := oldx509.ParseCertificateRequest(icReq.Bytes)
if err != nil {
// AUDIT[ Improper Messages ] 0786b6f2-91ca-4f48-9883-842a19084c64
improperMessage(MethodIssueCertificate, err, req)
@ -703,7 +704,7 @@ func NewCertificateAuthorityClient(clientName string, amqpConf *cmd.AMQPConfig,
}
// IssueCertificate sends a request to issue a certificate
func (cac CertificateAuthorityClient) IssueCertificate(ctx context.Context, csr x509.CertificateRequest, regID int64) (cert core.Certificate, err error) {
func (cac CertificateAuthorityClient) IssueCertificate(ctx context.Context, csr oldx509.CertificateRequest, regID int64) (cert core.Certificate, err error) {
var icReq issueCertificateRequest
icReq.Bytes = csr.Raw
icReq.RegID = regID

27
vendor/github.com/letsencrypt/go/LICENSE generated vendored Normal file
View File

@ -0,0 +1,27 @@
Copyright (c) 2012 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22
vendor/github.com/letsencrypt/go/PATENTS generated vendored Normal file
View File

@ -0,0 +1,22 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

View File

@ -0,0 +1,116 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x509
import (
"encoding/pem"
)
// CertPool is a set of certificates.
type CertPool struct {
bySubjectKeyId map[string][]int
byName map[string][]int
certs []*Certificate
}
// NewCertPool returns a new, empty CertPool.
func NewCertPool() *CertPool {
return &CertPool{
make(map[string][]int),
make(map[string][]int),
nil,
}
}
// findVerifiedParents attempts to find certificates in s which have signed the
// given certificate. If any candidates were rejected then errCert will be set
// to one of them, arbitrarily, and err will contain the reason that it was
// rejected.
func (s *CertPool) findVerifiedParents(cert *Certificate) (parents []int, errCert *Certificate, err error) {
if s == nil {
return
}
var candidates []int
if len(cert.AuthorityKeyId) > 0 {
candidates = s.bySubjectKeyId[string(cert.AuthorityKeyId)]
}
if len(candidates) == 0 {
candidates = s.byName[string(cert.RawIssuer)]
}
for _, c := range candidates {
if err = cert.CheckSignatureFrom(s.certs[c]); err == nil {
parents = append(parents, c)
} else {
errCert = s.certs[c]
}
}
return
}
// AddCert adds a certificate to a pool.
func (s *CertPool) AddCert(cert *Certificate) {
if cert == nil {
panic("adding nil Certificate to CertPool")
}
// Check that the certificate isn't being added twice.
for _, c := range s.certs {
if c.Equal(cert) {
return
}
}
n := len(s.certs)
s.certs = append(s.certs, cert)
if len(cert.SubjectKeyId) > 0 {
keyId := string(cert.SubjectKeyId)
s.bySubjectKeyId[keyId] = append(s.bySubjectKeyId[keyId], n)
}
name := string(cert.RawSubject)
s.byName[name] = append(s.byName[name], n)
}
// AppendCertsFromPEM attempts to parse a series of PEM encoded certificates.
// It appends any certificates found to s and reports whether any certificates
// were successfully parsed.
//
// On many Linux systems, /etc/ssl/cert.pem will contain the system wide set
// of root CAs in a format suitable for this function.
func (s *CertPool) AppendCertsFromPEM(pemCerts []byte) (ok bool) {
for len(pemCerts) > 0 {
var block *pem.Block
block, pemCerts = pem.Decode(pemCerts)
if block == nil {
break
}
if block.Type != "CERTIFICATE" || len(block.Headers) != 0 {
continue
}
cert, err := ParseCertificate(block.Bytes)
if err != nil {
continue
}
s.AddCert(cert)
ok = true
}
return
}
// Subjects returns a list of the DER-encoded subjects of
// all of the certificates in the pool.
func (s *CertPool) Subjects() (res [][]byte) {
res = make([][]byte, len(s.certs))
for i, c := range s.certs {
res[i] = c.RawSubject
}
return
}

View File

@ -0,0 +1,240 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x509
// RFC 1423 describes the encryption of PEM blocks. The algorithm used to
// generate a key from the password was derived by looking at the OpenSSL
// implementation.
import (
"crypto/aes"
"crypto/cipher"
"crypto/des"
"crypto/md5"
"encoding/hex"
"encoding/pem"
"errors"
"io"
"strings"
)
type PEMCipher int
// Possible values for the EncryptPEMBlock encryption algorithm.
const (
_ PEMCipher = iota
PEMCipherDES
PEMCipher3DES
PEMCipherAES128
PEMCipherAES192
PEMCipherAES256
)
// rfc1423Algo holds a method for enciphering a PEM block.
type rfc1423Algo struct {
cipher PEMCipher
name string
cipherFunc func(key []byte) (cipher.Block, error)
keySize int
blockSize int
}
// rfc1423Algos holds a slice of the possible ways to encrypt a PEM
// block. The ivSize numbers were taken from the OpenSSL source.
var rfc1423Algos = []rfc1423Algo{{
cipher: PEMCipherDES,
name: "DES-CBC",
cipherFunc: des.NewCipher,
keySize: 8,
blockSize: des.BlockSize,
}, {
cipher: PEMCipher3DES,
name: "DES-EDE3-CBC",
cipherFunc: des.NewTripleDESCipher,
keySize: 24,
blockSize: des.BlockSize,
}, {
cipher: PEMCipherAES128,
name: "AES-128-CBC",
cipherFunc: aes.NewCipher,
keySize: 16,
blockSize: aes.BlockSize,
}, {
cipher: PEMCipherAES192,
name: "AES-192-CBC",
cipherFunc: aes.NewCipher,
keySize: 24,
blockSize: aes.BlockSize,
}, {
cipher: PEMCipherAES256,
name: "AES-256-CBC",
cipherFunc: aes.NewCipher,
keySize: 32,
blockSize: aes.BlockSize,
},
}
// deriveKey uses a key derivation function to stretch the password into a key
// with the number of bits our cipher requires. This algorithm was derived from
// the OpenSSL source.
func (c rfc1423Algo) deriveKey(password, salt []byte) []byte {
hash := md5.New()
out := make([]byte, c.keySize)
var digest []byte
for i := 0; i < len(out); i += len(digest) {
hash.Reset()
hash.Write(digest)
hash.Write(password)
hash.Write(salt)
digest = hash.Sum(digest[:0])
copy(out[i:], digest)
}
return out
}
// IsEncryptedPEMBlock returns if the PEM block is password encrypted.
func IsEncryptedPEMBlock(b *pem.Block) bool {
_, ok := b.Headers["DEK-Info"]
return ok
}
// IncorrectPasswordError is returned when an incorrect password is detected.
var IncorrectPasswordError = errors.New("x509: decryption password incorrect")
// DecryptPEMBlock takes a password encrypted PEM block and the password used to
// encrypt it and returns a slice of decrypted DER encoded bytes. It inspects
// the DEK-Info header to determine the algorithm used for decryption. If no
// DEK-Info header is present, an error is returned. If an incorrect password
// is detected an IncorrectPasswordError is returned. Because of deficiencies
// in the encrypted-PEM format, it's not always possible to detect an incorrect
// password. In these cases no error will be returned but the decrypted DER
// bytes will be random noise.
func DecryptPEMBlock(b *pem.Block, password []byte) ([]byte, error) {
dek, ok := b.Headers["DEK-Info"]
if !ok {
return nil, errors.New("x509: no DEK-Info header in block")
}
idx := strings.Index(dek, ",")
if idx == -1 {
return nil, errors.New("x509: malformed DEK-Info header")
}
mode, hexIV := dek[:idx], dek[idx+1:]
ciph := cipherByName(mode)
if ciph == nil {
return nil, errors.New("x509: unknown encryption mode")
}
iv, err := hex.DecodeString(hexIV)
if err != nil {
return nil, err
}
if len(iv) != ciph.blockSize {
return nil, errors.New("x509: incorrect IV size")
}
// Based on the OpenSSL implementation. The salt is the first 8 bytes
// of the initialization vector.
key := ciph.deriveKey(password, iv[:8])
block, err := ciph.cipherFunc(key)
if err != nil {
return nil, err
}
if len(b.Bytes)%block.BlockSize() != 0 {
return nil, errors.New("x509: encrypted PEM data is not a multiple of the block size")
}
data := make([]byte, len(b.Bytes))
dec := cipher.NewCBCDecrypter(block, iv)
dec.CryptBlocks(data, b.Bytes)
// Blocks are padded using a scheme where the last n bytes of padding are all
// equal to n. It can pad from 1 to blocksize bytes inclusive. See RFC 1423.
// For example:
// [x y z 2 2]
// [x y 7 7 7 7 7 7 7]
// If we detect a bad padding, we assume it is an invalid password.
dlen := len(data)
if dlen == 0 || dlen%ciph.blockSize != 0 {
return nil, errors.New("x509: invalid padding")
}
last := int(data[dlen-1])
if dlen < last {
return nil, IncorrectPasswordError
}
if last == 0 || last > ciph.blockSize {
return nil, IncorrectPasswordError
}
for _, val := range data[dlen-last:] {
if int(val) != last {
return nil, IncorrectPasswordError
}
}
return data[:dlen-last], nil
}
// EncryptPEMBlock returns a PEM block of the specified type holding the
// given DER-encoded data encrypted with the specified algorithm and
// password.
func EncryptPEMBlock(rand io.Reader, blockType string, data, password []byte, alg PEMCipher) (*pem.Block, error) {
ciph := cipherByKey(alg)
if ciph == nil {
return nil, errors.New("x509: unknown encryption mode")
}
iv := make([]byte, ciph.blockSize)
if _, err := io.ReadFull(rand, iv); err != nil {
return nil, errors.New("x509: cannot generate IV: " + err.Error())
}
// The salt is the first 8 bytes of the initialization vector,
// matching the key derivation in DecryptPEMBlock.
key := ciph.deriveKey(password, iv[:8])
block, err := ciph.cipherFunc(key)
if err != nil {
return nil, err
}
enc := cipher.NewCBCEncrypter(block, iv)
pad := ciph.blockSize - len(data)%ciph.blockSize
encrypted := make([]byte, len(data), len(data)+pad)
// We could save this copy by encrypting all the whole blocks in
// the data separately, but it doesn't seem worth the additional
// code.
copy(encrypted, data)
// See RFC 1423, section 1.1
for i := 0; i < pad; i++ {
encrypted = append(encrypted, byte(pad))
}
enc.CryptBlocks(encrypted, encrypted)
return &pem.Block{
Type: blockType,
Headers: map[string]string{
"Proc-Type": "4,ENCRYPTED",
"DEK-Info": ciph.name + "," + hex.EncodeToString(iv),
},
Bytes: encrypted,
}, nil
}
func cipherByName(name string) *rfc1423Algo {
for i := range rfc1423Algos {
alg := &rfc1423Algos[i]
if alg.name == name {
return alg
}
}
return nil
}
func cipherByKey(key PEMCipher) *rfc1423Algo {
for i := range rfc1423Algos {
alg := &rfc1423Algos[i]
if alg.cipher == key {
return alg
}
}
return nil
}

View File

@ -0,0 +1,122 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x509
import (
"crypto/rsa"
"github.com/letsencrypt/go/src/encoding/asn1"
"errors"
"math/big"
)
// pkcs1PrivateKey is a structure which mirrors the PKCS#1 ASN.1 for an RSA private key.
type pkcs1PrivateKey struct {
Version int
N *big.Int
E int
D *big.Int
P *big.Int
Q *big.Int
// We ignore these values, if present, because rsa will calculate them.
Dp *big.Int `asn1:"optional"`
Dq *big.Int `asn1:"optional"`
Qinv *big.Int `asn1:"optional"`
AdditionalPrimes []pkcs1AdditionalRSAPrime `asn1:"optional,omitempty"`
}
type pkcs1AdditionalRSAPrime struct {
Prime *big.Int
// We ignore these values because rsa will calculate them.
Exp *big.Int
Coeff *big.Int
}
// ParsePKCS1PrivateKey returns an RSA private key from its ASN.1 PKCS#1 DER encoded form.
func ParsePKCS1PrivateKey(der []byte) (key *rsa.PrivateKey, err error) {
var priv pkcs1PrivateKey
rest, err := asn1.Unmarshal(der, &priv)
if len(rest) > 0 {
err = asn1.SyntaxError{Msg: "trailing data"}
return
}
if err != nil {
return
}
if priv.Version > 1 {
return nil, errors.New("x509: unsupported private key version")
}
if priv.N.Sign() <= 0 || priv.D.Sign() <= 0 || priv.P.Sign() <= 0 || priv.Q.Sign() <= 0 {
return nil, errors.New("x509: private key contains zero or negative value")
}
key = new(rsa.PrivateKey)
key.PublicKey = rsa.PublicKey{
E: priv.E,
N: priv.N,
}
key.D = priv.D
key.Primes = make([]*big.Int, 2+len(priv.AdditionalPrimes))
key.Primes[0] = priv.P
key.Primes[1] = priv.Q
for i, a := range priv.AdditionalPrimes {
if a.Prime.Sign() <= 0 {
return nil, errors.New("x509: private key contains zero or negative prime")
}
key.Primes[i+2] = a.Prime
// We ignore the other two values because rsa will calculate
// them as needed.
}
err = key.Validate()
if err != nil {
return nil, err
}
key.Precompute()
return
}
// MarshalPKCS1PrivateKey converts a private key to ASN.1 DER encoded form.
func MarshalPKCS1PrivateKey(key *rsa.PrivateKey) []byte {
key.Precompute()
version := 0
if len(key.Primes) > 2 {
version = 1
}
priv := pkcs1PrivateKey{
Version: version,
N: key.N,
E: key.PublicKey.E,
D: key.D,
P: key.Primes[0],
Q: key.Primes[1],
Dp: key.Precomputed.Dp,
Dq: key.Precomputed.Dq,
Qinv: key.Precomputed.Qinv,
}
priv.AdditionalPrimes = make([]pkcs1AdditionalRSAPrime, len(key.Precomputed.CRTValues))
for i, values := range key.Precomputed.CRTValues {
priv.AdditionalPrimes[i].Prime = key.Primes[2+i]
priv.AdditionalPrimes[i].Exp = values.Exp
priv.AdditionalPrimes[i].Coeff = values.Coeff
}
b, _ := asn1.Marshal(priv)
return b
}
// rsaPublicKey reflects the ASN.1 structure of a PKCS#1 public key.
type rsaPublicKey struct {
N *big.Int
E int
}

View File

@ -0,0 +1,54 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x509
import (
"github.com/letsencrypt/go/src/crypto/x509/pkix"
"github.com/letsencrypt/go/src/encoding/asn1"
"errors"
"fmt"
)
// pkcs8 reflects an ASN.1, PKCS#8 PrivateKey. See
// ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-8/pkcs-8v1_2.asn
// and RFC5208.
type pkcs8 struct {
Version int
Algo pkix.AlgorithmIdentifier
PrivateKey []byte
// optional attributes omitted.
}
// ParsePKCS8PrivateKey parses an unencrypted, PKCS#8 private key. See
// http://www.rsa.com/rsalabs/node.asp?id=2130 and RFC5208.
func ParsePKCS8PrivateKey(der []byte) (key interface{}, err error) {
var privKey pkcs8
if _, err := asn1.Unmarshal(der, &privKey); err != nil {
return nil, err
}
switch {
case privKey.Algo.Algorithm.Equal(oidPublicKeyRSA):
key, err = ParsePKCS1PrivateKey(privKey.PrivateKey)
if err != nil {
return nil, errors.New("x509: failed to parse RSA private key embedded in PKCS#8: " + err.Error())
}
return key, nil
case privKey.Algo.Algorithm.Equal(oidPublicKeyECDSA):
bytes := privKey.Algo.Parameters.FullBytes
namedCurveOID := new(asn1.ObjectIdentifier)
if _, err := asn1.Unmarshal(bytes, namedCurveOID); err != nil {
namedCurveOID = nil
}
key, err = parseECPrivateKey(namedCurveOID, privKey.PrivateKey)
if err != nil {
return nil, errors.New("x509: failed to parse EC private key embedded in PKCS#8: " + err.Error())
}
return key, nil
default:
return nil, fmt.Errorf("x509: PKCS#8 wrapping contained private key with unknown algorithm: %v", privKey.Algo.Algorithm)
}
}

View File

@ -0,0 +1,195 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package pkix contains shared, low level structures used for ASN.1 parsing
// and serialization of X.509 certificates, CRL and OCSP.
package pkix
import (
"github.com/letsencrypt/go/src/encoding/asn1"
"math/big"
"time"
)
// AlgorithmIdentifier represents the ASN.1 structure of the same name. See RFC
// 5280, section 4.1.1.2.
type AlgorithmIdentifier struct {
Algorithm asn1.ObjectIdentifier
Parameters asn1.RawValue `asn1:"optional"`
}
type RDNSequence []RelativeDistinguishedNameSET
type RelativeDistinguishedNameSET []AttributeTypeAndValue
// AttributeTypeAndValue mirrors the ASN.1 structure of the same name in
// http://tools.ietf.org/html/rfc5280#section-4.1.2.4
type AttributeTypeAndValue struct {
Type asn1.ObjectIdentifier
Value interface{}
}
// AttributeTypeAndValueSET represents a set of ASN.1 sequences of
// AttributeTypeAndValue sequences from RFC 2986 (PKCS #10).
type AttributeTypeAndValueSET struct {
Type asn1.ObjectIdentifier
Value [][]AttributeTypeAndValue `asn1:"set"`
}
// Extension represents the ASN.1 structure of the same name. See RFC
// 5280, section 4.2.
type Extension struct {
Id asn1.ObjectIdentifier
Critical bool `asn1:"optional"`
Value []byte
}
// Name represents an X.509 distinguished name. This only includes the common
// elements of a DN. When parsing, all elements are stored in Names and
// non-standard elements can be extracted from there. When marshaling, elements
// in ExtraNames are appended and override other values with the same OID.
type Name struct {
Country, Organization, OrganizationalUnit []string
Locality, Province []string
StreetAddress, PostalCode []string
SerialNumber, CommonName string
Names []AttributeTypeAndValue
ExtraNames []AttributeTypeAndValue
}
func (n *Name) FillFromRDNSequence(rdns *RDNSequence) {
for _, rdn := range *rdns {
if len(rdn) == 0 {
continue
}
atv := rdn[0]
n.Names = append(n.Names, atv)
value, ok := atv.Value.(string)
if !ok {
continue
}
t := atv.Type
if len(t) == 4 && t[0] == 2 && t[1] == 5 && t[2] == 4 {
switch t[3] {
case 3:
n.CommonName = value
case 5:
n.SerialNumber = value
case 6:
n.Country = append(n.Country, value)
case 7:
n.Locality = append(n.Locality, value)
case 8:
n.Province = append(n.Province, value)
case 9:
n.StreetAddress = append(n.StreetAddress, value)
case 10:
n.Organization = append(n.Organization, value)
case 11:
n.OrganizationalUnit = append(n.OrganizationalUnit, value)
case 17:
n.PostalCode = append(n.PostalCode, value)
}
}
}
}
var (
oidCountry = []int{2, 5, 4, 6}
oidOrganization = []int{2, 5, 4, 10}
oidOrganizationalUnit = []int{2, 5, 4, 11}
oidCommonName = []int{2, 5, 4, 3}
oidSerialNumber = []int{2, 5, 4, 5}
oidLocality = []int{2, 5, 4, 7}
oidProvince = []int{2, 5, 4, 8}
oidStreetAddress = []int{2, 5, 4, 9}
oidPostalCode = []int{2, 5, 4, 17}
)
// appendRDNs appends a relativeDistinguishedNameSET to the given RDNSequence
// and returns the new value. The relativeDistinguishedNameSET contains an
// attributeTypeAndValue for each of the given values. See RFC 5280, A.1, and
// search for AttributeTypeAndValue.
func (n Name) appendRDNs(in RDNSequence, values []string, oid asn1.ObjectIdentifier) RDNSequence {
if len(values) == 0 || oidInAttributeTypeAndValue(oid, n.ExtraNames) {
return in
}
s := make([]AttributeTypeAndValue, len(values))
for i, value := range values {
s[i].Type = oid
s[i].Value = value
}
return append(in, s)
}
func (n Name) ToRDNSequence() (ret RDNSequence) {
ret = n.appendRDNs(ret, n.Country, oidCountry)
ret = n.appendRDNs(ret, n.Organization, oidOrganization)
ret = n.appendRDNs(ret, n.OrganizationalUnit, oidOrganizationalUnit)
ret = n.appendRDNs(ret, n.Locality, oidLocality)
ret = n.appendRDNs(ret, n.Province, oidProvince)
ret = n.appendRDNs(ret, n.StreetAddress, oidStreetAddress)
ret = n.appendRDNs(ret, n.PostalCode, oidPostalCode)
if len(n.CommonName) > 0 {
ret = n.appendRDNs(ret, []string{n.CommonName}, oidCommonName)
}
if len(n.SerialNumber) > 0 {
ret = n.appendRDNs(ret, []string{n.SerialNumber}, oidSerialNumber)
}
for _, atv := range n.ExtraNames {
ret = append(ret, []AttributeTypeAndValue{atv})
}
return ret
}
// oidInAttributeTypeAndValue returns whether a type with the given OID exists
// in atv.
func oidInAttributeTypeAndValue(oid asn1.ObjectIdentifier, atv []AttributeTypeAndValue) bool {
for _, a := range atv {
if a.Type.Equal(oid) {
return true
}
}
return false
}
// CertificateList represents the ASN.1 structure of the same name. See RFC
// 5280, section 5.1. Use Certificate.CheckCRLSignature to verify the
// signature.
type CertificateList struct {
TBSCertList TBSCertificateList
SignatureAlgorithm AlgorithmIdentifier
SignatureValue asn1.BitString
}
// HasExpired reports whether now is past the expiry time of certList.
func (certList *CertificateList) HasExpired(now time.Time) bool {
return now.After(certList.TBSCertList.NextUpdate)
}
// TBSCertificateList represents the ASN.1 structure of the same name. See RFC
// 5280, section 5.1.
type TBSCertificateList struct {
Raw asn1.RawContent
Version int `asn1:"optional,default:1"`
Signature AlgorithmIdentifier
Issuer RDNSequence
ThisUpdate time.Time
NextUpdate time.Time `asn1:"optional"`
RevokedCertificates []RevokedCertificate `asn1:"optional"`
Extensions []Extension `asn1:"tag:0,optional,explicit"`
}
// RevokedCertificate represents the ASN.1 structure of the same name. See RFC
// 5280, section 5.1.
type RevokedCertificate struct {
SerialNumber *big.Int
RevocationTime time.Time
Extensions []Extension `asn1:"optional"`
}

View File

@ -0,0 +1,17 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x509
import "sync"
var (
once sync.Once
systemRoots *CertPool
)
func systemRootsPool() *CertPool {
once.Do(initSystemRoots)
return systemRoots
}

View File

@ -0,0 +1,14 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build dragonfly freebsd netbsd openbsd
package x509
// Possible certificate files; stop after finding one.
var certFiles = []string{
"/usr/local/share/certs/ca-root-nss.crt", // FreeBSD/DragonFly
"/etc/ssl/cert.pem", // OpenBSD
"/etc/openssl/certs/ca-certificates.crt", // NetBSD
}

View File

@ -0,0 +1,79 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build cgo,!arm,!arm64,!ios
package x509
/*
#cgo CFLAGS: -mmacosx-version-min=10.6 -D__MAC_OS_X_VERSION_MAX_ALLOWED=1060
#cgo LDFLAGS: -framework CoreFoundation -framework Security
#include <CoreFoundation/CoreFoundation.h>
#include <Security/Security.h>
// FetchPEMRoots fetches the system's list of trusted X.509 root certificates.
//
// On success it returns 0 and fills pemRoots with a CFDataRef that contains the extracted root
// certificates of the system. On failure, the function returns -1.
//
// Note: The CFDataRef returned in pemRoots must be released (using CFRelease) after
// we've consumed its content.
int FetchPEMRoots(CFDataRef *pemRoots) {
if (pemRoots == NULL) {
return -1;
}
CFArrayRef certs = NULL;
OSStatus err = SecTrustCopyAnchorCertificates(&certs);
if (err != noErr) {
return -1;
}
CFMutableDataRef combinedData = CFDataCreateMutable(kCFAllocatorDefault, 0);
int i, ncerts = CFArrayGetCount(certs);
for (i = 0; i < ncerts; i++) {
CFDataRef data = NULL;
SecCertificateRef cert = (SecCertificateRef)CFArrayGetValueAtIndex(certs, i);
if (cert == NULL) {
continue;
}
// Note: SecKeychainItemExport is deprecated as of 10.7 in favor of SecItemExport.
// Once we support weak imports via cgo we should prefer that, and fall back to this
// for older systems.
err = SecKeychainItemExport(cert, kSecFormatX509Cert, kSecItemPemArmour, NULL, &data);
if (err != noErr) {
continue;
}
if (data != NULL) {
CFDataAppendBytes(combinedData, CFDataGetBytePtr(data), CFDataGetLength(data));
CFRelease(data);
}
}
CFRelease(certs);
*pemRoots = combinedData;
return 0;
}
*/
import "C"
import "unsafe"
func initSystemRoots() {
roots := NewCertPool()
var data C.CFDataRef = nil
err := C.FetchPEMRoots(&data)
if err == -1 {
return
}
defer C.CFRelease(C.CFTypeRef(data))
buf := C.GoBytes(unsafe.Pointer(C.CFDataGetBytePtr(data)), C.int(C.CFDataGetLength(data)))
roots.AppendCertsFromPEM(buf)
systemRoots = roots
}

View File

@ -0,0 +1,25 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run root_darwin_arm_gen.go -output root_darwin_armx.go
package x509
import "os/exec"
func (c *Certificate) systemVerify(opts *VerifyOptions) (chains [][]*Certificate, err error) {
return nil, nil
}
func execSecurityRoots() (*CertPool, error) {
cmd := exec.Command("/usr/bin/security", "find-certificate", "-a", "-p", "/System/Library/Keychains/SystemRootCertificates.keychain")
data, err := cmd.Output()
if err != nil {
return nil, err
}
roots := NewCertPool()
roots.AppendCertsFromPEM(data)
return roots, nil
}

View File

@ -0,0 +1,191 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
// Generates root_darwin_armx.go.
//
// As of iOS 8, there is no API for querying the system trusted X.509 root
// certificates. We could use SecTrustEvaluate to verify that a trust chain
// exists for a certificate, but the x509 API requires returning the entire
// chain.
//
// Apple publishes the list of trusted root certificates for iOS on
// support.apple.com. So we parse the list and extract the certificates from
// an OS X machine and embed them into the x509 package.
package main
import (
"bytes"
"crypto/x509"
"encoding/pem"
"flag"
"fmt"
"go/format"
"io/ioutil"
"log"
"math/big"
"net/http"
"os/exec"
"strings"
)
var output = flag.String("output", "root_darwin_armx.go", "file name to write")
func main() {
certs, err := selectCerts()
if err != nil {
log.Fatal(err)
}
buf := new(bytes.Buffer)
fmt.Fprintf(buf, "// Created by root_darwin_arm_gen --output %s; DO NOT EDIT\n", *output)
fmt.Fprintf(buf, "%s", header)
fmt.Fprintf(buf, "const systemRootsPEM = `\n")
for _, cert := range certs {
b := &pem.Block{
Type: "CERTIFICATE",
Bytes: cert.Raw,
}
if err := pem.Encode(buf, b); err != nil {
log.Fatal(err)
}
}
fmt.Fprintf(buf, "`")
source, err := format.Source(buf.Bytes())
if err != nil {
log.Fatal("source format error:", err)
}
if err := ioutil.WriteFile(*output, source, 0644); err != nil {
log.Fatal(err)
}
}
func selectCerts() ([]*x509.Certificate, error) {
ids, err := fetchCertIDs()
if err != nil {
return nil, err
}
scerts, err := sysCerts()
if err != nil {
return nil, err
}
var certs []*x509.Certificate
for _, id := range ids {
sn, ok := big.NewInt(0).SetString(id.serialNumber, 0) // 0x prefix selects hex
if !ok {
return nil, fmt.Errorf("invalid serial number: %q", id.serialNumber)
}
ski, ok := big.NewInt(0).SetString(id.subjectKeyID, 0)
if !ok {
return nil, fmt.Errorf("invalid Subject Key ID: %q", id.subjectKeyID)
}
for _, cert := range scerts {
if sn.Cmp(cert.SerialNumber) != 0 {
continue
}
cski := big.NewInt(0).SetBytes(cert.SubjectKeyId)
if ski.Cmp(cski) != 0 {
continue
}
certs = append(certs, cert)
break
}
}
return certs, nil
}
func sysCerts() (certs []*x509.Certificate, err error) {
cmd := exec.Command("/usr/bin/security", "find-certificate", "-a", "-p", "/System/Library/Keychains/SystemRootCertificates.keychain")
data, err := cmd.Output()
if err != nil {
return nil, err
}
for len(data) > 0 {
var block *pem.Block
block, data = pem.Decode(data)
if block == nil {
break
}
if block.Type != "CERTIFICATE" || len(block.Headers) != 0 {
continue
}
cert, err := x509.ParseCertificate(block.Bytes)
if err != nil {
continue
}
certs = append(certs, cert)
}
return certs, nil
}
type certID struct {
serialNumber string
subjectKeyID string
}
// fetchCertIDs fetches IDs of iOS X509 certificates from apple.com.
func fetchCertIDs() ([]certID, error) {
resp, err := http.Get("https://support.apple.com/en-us/HT204132")
if err != nil {
return nil, err
}
defer resp.Body.Close()
body, err := ioutil.ReadAll(resp.Body)
if err != nil {
return nil, err
}
text := string(body)
text = text[strings.Index(text, "<section id=trusted"):]
text = text[:strings.Index(text, "</section>")]
lines := strings.Split(text, "\n")
var ids []certID
var id certID
for i, ln := range lines {
if i == len(lines)-1 {
break
}
const sn = "Serial Number:"
if ln == sn {
id.serialNumber = "0x" + strings.Replace(strings.TrimSpace(lines[i+1]), ":", "", -1)
continue
}
if strings.HasPrefix(ln, sn) {
// extract hex value from parentheses.
id.serialNumber = ln[strings.Index(ln, "(")+1 : len(ln)-1]
continue
}
if strings.TrimSpace(ln) == "X509v3 Subject Key Identifier:" {
id.subjectKeyID = "0x" + strings.Replace(strings.TrimSpace(lines[i+1]), ":", "", -1)
ids = append(ids, id)
id = certID{}
}
}
return ids, nil
}
const header = `
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build cgo
// +build darwin
// +build arm arm64
package x509
func initSystemRoots() {
systemRoots = NewCertPool()
systemRoots.AppendCertsFromPEM([]byte(systemRootsPEM))
}
`

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,13 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x509
// Possible certificate files; stop after finding one.
var certFiles = []string{
"/etc/ssl/certs/ca-certificates.crt", // Debian/Ubuntu/Gentoo etc.
"/etc/pki/tls/certs/ca-bundle.crt", // Fedora/RHEL
"/etc/ssl/ca-bundle.pem", // OpenSUSE
"/etc/pki/tls/cacert.pem", // OpenELEC
}

View File

@ -0,0 +1,8 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x509
// Possible certificate files; stop after finding one.
var certFiles = []string{}

View File

@ -0,0 +1,11 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !cgo
package x509
func initSystemRoots() {
systemRoots, _ = execSecurityRoots()
}

View File

@ -0,0 +1,33 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build plan9
package x509
import "io/ioutil"
// Possible certificate files; stop after finding one.
var certFiles = []string{
"/sys/lib/tls/ca.pem",
}
func (c *Certificate) systemVerify(opts *VerifyOptions) (chains [][]*Certificate, err error) {
return nil, nil
}
func initSystemRoots() {
roots := NewCertPool()
for _, file := range certFiles {
data, err := ioutil.ReadFile(file)
if err == nil {
roots.AppendCertsFromPEM(data)
systemRoots = roots
return
}
}
// All of the files failed to load. systemRoots will be nil which will
// trigger a specific error at verification time.
}

View File

@ -0,0 +1,12 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x509
// Possible certificate files; stop after finding one.
var certFiles = []string{
"/etc/certs/ca-certificates.crt", // Solaris 11.2+
"/etc/ssl/certs/ca-certificates.crt", // Joyent SmartOS
"/etc/ssl/cacert.pem", // OmniOS
}

View File

@ -0,0 +1,52 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build dragonfly freebsd linux nacl netbsd openbsd solaris
package x509
import "io/ioutil"
// Possible directories with certificate files; stop after successfully
// reading at least one file from a directory.
var certDirectories = []string{
"/system/etc/security/cacerts", // Android
}
func (c *Certificate) systemVerify(opts *VerifyOptions) (chains [][]*Certificate, err error) {
return nil, nil
}
func initSystemRoots() {
roots := NewCertPool()
for _, file := range certFiles {
data, err := ioutil.ReadFile(file)
if err == nil {
roots.AppendCertsFromPEM(data)
systemRoots = roots
return
}
}
for _, directory := range certDirectories {
fis, err := ioutil.ReadDir(directory)
if err != nil {
continue
}
rootsAdded := false
for _, fi := range fis {
data, err := ioutil.ReadFile(directory + "/" + fi.Name())
if err == nil && roots.AppendCertsFromPEM(data) {
rootsAdded = true
}
}
if rootsAdded {
systemRoots = roots
return
}
}
// All of the files failed to load. systemRoots will be nil which will
// trigger a specific error at verification time.
}

View File

@ -0,0 +1,229 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x509
import (
"errors"
"syscall"
"unsafe"
)
// Creates a new *syscall.CertContext representing the leaf certificate in an in-memory
// certificate store containing itself and all of the intermediate certificates specified
// in the opts.Intermediates CertPool.
//
// A pointer to the in-memory store is available in the returned CertContext's Store field.
// The store is automatically freed when the CertContext is freed using
// syscall.CertFreeCertificateContext.
func createStoreContext(leaf *Certificate, opts *VerifyOptions) (*syscall.CertContext, error) {
var storeCtx *syscall.CertContext
leafCtx, err := syscall.CertCreateCertificateContext(syscall.X509_ASN_ENCODING|syscall.PKCS_7_ASN_ENCODING, &leaf.Raw[0], uint32(len(leaf.Raw)))
if err != nil {
return nil, err
}
defer syscall.CertFreeCertificateContext(leafCtx)
handle, err := syscall.CertOpenStore(syscall.CERT_STORE_PROV_MEMORY, 0, 0, syscall.CERT_STORE_DEFER_CLOSE_UNTIL_LAST_FREE_FLAG, 0)
if err != nil {
return nil, err
}
defer syscall.CertCloseStore(handle, 0)
err = syscall.CertAddCertificateContextToStore(handle, leafCtx, syscall.CERT_STORE_ADD_ALWAYS, &storeCtx)
if err != nil {
return nil, err
}
if opts.Intermediates != nil {
for _, intermediate := range opts.Intermediates.certs {
ctx, err := syscall.CertCreateCertificateContext(syscall.X509_ASN_ENCODING|syscall.PKCS_7_ASN_ENCODING, &intermediate.Raw[0], uint32(len(intermediate.Raw)))
if err != nil {
return nil, err
}
err = syscall.CertAddCertificateContextToStore(handle, ctx, syscall.CERT_STORE_ADD_ALWAYS, nil)
syscall.CertFreeCertificateContext(ctx)
if err != nil {
return nil, err
}
}
}
return storeCtx, nil
}
// extractSimpleChain extracts the final certificate chain from a CertSimpleChain.
func extractSimpleChain(simpleChain **syscall.CertSimpleChain, count int) (chain []*Certificate, err error) {
if simpleChain == nil || count == 0 {
return nil, errors.New("x509: invalid simple chain")
}
simpleChains := (*[1 << 20]*syscall.CertSimpleChain)(unsafe.Pointer(simpleChain))[:]
lastChain := simpleChains[count-1]
elements := (*[1 << 20]*syscall.CertChainElement)(unsafe.Pointer(lastChain.Elements))[:]
for i := 0; i < int(lastChain.NumElements); i++ {
// Copy the buf, since ParseCertificate does not create its own copy.
cert := elements[i].CertContext
encodedCert := (*[1 << 20]byte)(unsafe.Pointer(cert.EncodedCert))[:]
buf := make([]byte, cert.Length)
copy(buf, encodedCert[:])
parsedCert, err := ParseCertificate(buf)
if err != nil {
return nil, err
}
chain = append(chain, parsedCert)
}
return chain, nil
}
// checkChainTrustStatus checks the trust status of the certificate chain, translating
// any errors it finds into Go errors in the process.
func checkChainTrustStatus(c *Certificate, chainCtx *syscall.CertChainContext) error {
if chainCtx.TrustStatus.ErrorStatus != syscall.CERT_TRUST_NO_ERROR {
status := chainCtx.TrustStatus.ErrorStatus
switch status {
case syscall.CERT_TRUST_IS_NOT_TIME_VALID:
return CertificateInvalidError{c, Expired}
default:
return UnknownAuthorityError{c, nil, nil}
}
}
return nil
}
// checkChainSSLServerPolicy checks that the certificate chain in chainCtx is valid for
// use as a certificate chain for a SSL/TLS server.
func checkChainSSLServerPolicy(c *Certificate, chainCtx *syscall.CertChainContext, opts *VerifyOptions) error {
servernamep, err := syscall.UTF16PtrFromString(opts.DNSName)
if err != nil {
return err
}
sslPara := &syscall.SSLExtraCertChainPolicyPara{
AuthType: syscall.AUTHTYPE_SERVER,
ServerName: servernamep,
}
sslPara.Size = uint32(unsafe.Sizeof(*sslPara))
para := &syscall.CertChainPolicyPara{
ExtraPolicyPara: uintptr(unsafe.Pointer(sslPara)),
}
para.Size = uint32(unsafe.Sizeof(*para))
status := syscall.CertChainPolicyStatus{}
err = syscall.CertVerifyCertificateChainPolicy(syscall.CERT_CHAIN_POLICY_SSL, chainCtx, para, &status)
if err != nil {
return err
}
// TODO(mkrautz): use the lChainIndex and lElementIndex fields
// of the CertChainPolicyStatus to provide proper context, instead
// using c.
if status.Error != 0 {
switch status.Error {
case syscall.CERT_E_EXPIRED:
return CertificateInvalidError{c, Expired}
case syscall.CERT_E_CN_NO_MATCH:
return HostnameError{c, opts.DNSName}
case syscall.CERT_E_UNTRUSTEDROOT:
return UnknownAuthorityError{c, nil, nil}
default:
return UnknownAuthorityError{c, nil, nil}
}
}
return nil
}
// systemVerify is like Verify, except that it uses CryptoAPI calls
// to build certificate chains and verify them.
func (c *Certificate) systemVerify(opts *VerifyOptions) (chains [][]*Certificate, err error) {
hasDNSName := opts != nil && len(opts.DNSName) > 0
storeCtx, err := createStoreContext(c, opts)
if err != nil {
return nil, err
}
defer syscall.CertFreeCertificateContext(storeCtx)
para := new(syscall.CertChainPara)
para.Size = uint32(unsafe.Sizeof(*para))
// If there's a DNSName set in opts, assume we're verifying
// a certificate from a TLS server.
if hasDNSName {
oids := []*byte{
&syscall.OID_PKIX_KP_SERVER_AUTH[0],
// Both IE and Chrome allow certificates with
// Server Gated Crypto as well. Some certificates
// in the wild require them.
&syscall.OID_SERVER_GATED_CRYPTO[0],
&syscall.OID_SGC_NETSCAPE[0],
}
para.RequestedUsage.Type = syscall.USAGE_MATCH_TYPE_OR
para.RequestedUsage.Usage.Length = uint32(len(oids))
para.RequestedUsage.Usage.UsageIdentifiers = &oids[0]
} else {
para.RequestedUsage.Type = syscall.USAGE_MATCH_TYPE_AND
para.RequestedUsage.Usage.Length = 0
para.RequestedUsage.Usage.UsageIdentifiers = nil
}
var verifyTime *syscall.Filetime
if opts != nil && !opts.CurrentTime.IsZero() {
ft := syscall.NsecToFiletime(opts.CurrentTime.UnixNano())
verifyTime = &ft
}
// CertGetCertificateChain will traverse Windows's root stores
// in an attempt to build a verified certificate chain. Once
// it has found a verified chain, it stops. MSDN docs on
// CERT_CHAIN_CONTEXT:
//
// When a CERT_CHAIN_CONTEXT is built, the first simple chain
// begins with an end certificate and ends with a self-signed
// certificate. If that self-signed certificate is not a root
// or otherwise trusted certificate, an attempt is made to
// build a new chain. CTLs are used to create the new chain
// beginning with the self-signed certificate from the original
// chain as the end certificate of the new chain. This process
// continues building additional simple chains until the first
// self-signed certificate is a trusted certificate or until
// an additional simple chain cannot be built.
//
// The result is that we'll only get a single trusted chain to
// return to our caller.
var chainCtx *syscall.CertChainContext
err = syscall.CertGetCertificateChain(syscall.Handle(0), storeCtx, verifyTime, storeCtx.Store, para, 0, 0, &chainCtx)
if err != nil {
return nil, err
}
defer syscall.CertFreeCertificateChain(chainCtx)
err = checkChainTrustStatus(c, chainCtx)
if err != nil {
return nil, err
}
if hasDNSName {
err = checkChainSSLServerPolicy(c, chainCtx, opts)
if err != nil {
return nil, err
}
}
chain, err := extractSimpleChain(chainCtx.Chains, int(chainCtx.ChainCount))
if err != nil {
return nil, err
}
chains = append(chains, chain)
return chains, nil
}
func initSystemRoots() {
}

View File

@ -0,0 +1,83 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x509
import (
"crypto/ecdsa"
"crypto/elliptic"
"github.com/letsencrypt/go/src/encoding/asn1"
"errors"
"fmt"
"math/big"
)
const ecPrivKeyVersion = 1
// ecPrivateKey reflects an ASN.1 Elliptic Curve Private Key Structure.
// References:
// RFC5915
// SEC1 - http://www.secg.org/sec1-v2.pdf
// Per RFC5915 the NamedCurveOID is marked as ASN.1 OPTIONAL, however in
// most cases it is not.
type ecPrivateKey struct {
Version int
PrivateKey []byte
NamedCurveOID asn1.ObjectIdentifier `asn1:"optional,explicit,tag:0"`
PublicKey asn1.BitString `asn1:"optional,explicit,tag:1"`
}
// ParseECPrivateKey parses an ASN.1 Elliptic Curve Private Key Structure.
func ParseECPrivateKey(der []byte) (key *ecdsa.PrivateKey, err error) {
return parseECPrivateKey(nil, der)
}
// MarshalECPrivateKey marshals an EC private key into ASN.1, DER format.
func MarshalECPrivateKey(key *ecdsa.PrivateKey) ([]byte, error) {
oid, ok := oidFromNamedCurve(key.Curve)
if !ok {
return nil, errors.New("x509: unknown elliptic curve")
}
return asn1.Marshal(ecPrivateKey{
Version: 1,
PrivateKey: key.D.Bytes(),
NamedCurveOID: oid,
PublicKey: asn1.BitString{Bytes: elliptic.Marshal(key.Curve, key.X, key.Y)},
})
}
// parseECPrivateKey parses an ASN.1 Elliptic Curve Private Key Structure.
// The OID for the named curve may be provided from another source (such as
// the PKCS8 container) - if it is provided then use this instead of the OID
// that may exist in the EC private key structure.
func parseECPrivateKey(namedCurveOID *asn1.ObjectIdentifier, der []byte) (key *ecdsa.PrivateKey, err error) {
var privKey ecPrivateKey
if _, err := asn1.Unmarshal(der, &privKey); err != nil {
return nil, errors.New("x509: failed to parse EC private key: " + err.Error())
}
if privKey.Version != ecPrivKeyVersion {
return nil, fmt.Errorf("x509: unknown EC private key version %d", privKey.Version)
}
var curve elliptic.Curve
if namedCurveOID != nil {
curve = namedCurveFromOID(*namedCurveOID)
} else {
curve = namedCurveFromOID(privKey.NamedCurveOID)
}
if curve == nil {
return nil, errors.New("x509: unknown elliptic curve")
}
k := new(big.Int).SetBytes(privKey.PrivateKey)
if k.Cmp(curve.Params().N) >= 0 {
return nil, errors.New("x509: invalid elliptic curve private key value")
}
priv := new(ecdsa.PrivateKey)
priv.Curve = curve
priv.D = k
priv.X, priv.Y = curve.ScalarBaseMult(privKey.PrivateKey)
return priv, nil
}

View File

@ -0,0 +1,483 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x509
import (
"fmt"
"net"
"runtime"
"strings"
"time"
"unicode/utf8"
)
type InvalidReason int
const (
// NotAuthorizedToSign results when a certificate is signed by another
// which isn't marked as a CA certificate.
NotAuthorizedToSign InvalidReason = iota
// Expired results when a certificate has expired, based on the time
// given in the VerifyOptions.
Expired
// CANotAuthorizedForThisName results when an intermediate or root
// certificate has a name constraint which doesn't include the name
// being checked.
CANotAuthorizedForThisName
// TooManyIntermediates results when a path length constraint is
// violated.
TooManyIntermediates
// IncompatibleUsage results when the certificate's key usage indicates
// that it may only be used for a different purpose.
IncompatibleUsage
)
// CertificateInvalidError results when an odd error occurs. Users of this
// library probably want to handle all these errors uniformly.
type CertificateInvalidError struct {
Cert *Certificate
Reason InvalidReason
}
func (e CertificateInvalidError) Error() string {
switch e.Reason {
case NotAuthorizedToSign:
return "x509: certificate is not authorized to sign other certificates"
case Expired:
return "x509: certificate has expired or is not yet valid"
case CANotAuthorizedForThisName:
return "x509: a root or intermediate certificate is not authorized to sign in this domain"
case TooManyIntermediates:
return "x509: too many intermediates for path length constraint"
case IncompatibleUsage:
return "x509: certificate specifies an incompatible key usage"
}
return "x509: unknown error"
}
// HostnameError results when the set of authorized names doesn't match the
// requested name.
type HostnameError struct {
Certificate *Certificate
Host string
}
func (h HostnameError) Error() string {
c := h.Certificate
var valid string
if ip := net.ParseIP(h.Host); ip != nil {
// Trying to validate an IP
if len(c.IPAddresses) == 0 {
return "x509: cannot validate certificate for " + h.Host + " because it doesn't contain any IP SANs"
}
for _, san := range c.IPAddresses {
if len(valid) > 0 {
valid += ", "
}
valid += san.String()
}
} else {
if len(c.DNSNames) > 0 {
valid = strings.Join(c.DNSNames, ", ")
} else {
valid = c.Subject.CommonName
}
}
return "x509: certificate is valid for " + valid + ", not " + h.Host
}
// UnknownAuthorityError results when the certificate issuer is unknown
type UnknownAuthorityError struct {
cert *Certificate
// hintErr contains an error that may be helpful in determining why an
// authority wasn't found.
hintErr error
// hintCert contains a possible authority certificate that was rejected
// because of the error in hintErr.
hintCert *Certificate
}
func (e UnknownAuthorityError) Error() string {
s := "x509: certificate signed by unknown authority"
if e.hintErr != nil {
certName := e.hintCert.Subject.CommonName
if len(certName) == 0 {
if len(e.hintCert.Subject.Organization) > 0 {
certName = e.hintCert.Subject.Organization[0]
}
certName = "serial:" + e.hintCert.SerialNumber.String()
}
s += fmt.Sprintf(" (possibly because of %q while trying to verify candidate authority certificate %q)", e.hintErr, certName)
}
return s
}
// SystemRootsError results when we fail to load the system root certificates.
type SystemRootsError struct{}
func (SystemRootsError) Error() string {
return "x509: failed to load system roots and no roots provided"
}
// VerifyOptions contains parameters for Certificate.Verify. It's a structure
// because other PKIX verification APIs have ended up needing many options.
type VerifyOptions struct {
DNSName string
Intermediates *CertPool
Roots *CertPool // if nil, the system roots are used
CurrentTime time.Time // if zero, the current time is used
// KeyUsage specifies which Extended Key Usage values are acceptable.
// An empty list means ExtKeyUsageServerAuth. Key usage is considered a
// constraint down the chain which mirrors Windows CryptoAPI behaviour,
// but not the spec. To accept any key usage, include ExtKeyUsageAny.
KeyUsages []ExtKeyUsage
}
const (
leafCertificate = iota
intermediateCertificate
rootCertificate
)
// isValid performs validity checks on the c.
func (c *Certificate) isValid(certType int, currentChain []*Certificate, opts *VerifyOptions) error {
now := opts.CurrentTime
if now.IsZero() {
now = time.Now()
}
if now.Before(c.NotBefore) || now.After(c.NotAfter) {
return CertificateInvalidError{c, Expired}
}
if len(c.PermittedDNSDomains) > 0 {
ok := false
for _, domain := range c.PermittedDNSDomains {
if opts.DNSName == domain ||
(strings.HasSuffix(opts.DNSName, domain) &&
len(opts.DNSName) >= 1+len(domain) &&
opts.DNSName[len(opts.DNSName)-len(domain)-1] == '.') {
ok = true
break
}
}
if !ok {
return CertificateInvalidError{c, CANotAuthorizedForThisName}
}
}
// KeyUsage status flags are ignored. From Engineering Security, Peter
// Gutmann: A European government CA marked its signing certificates as
// being valid for encryption only, but no-one noticed. Another
// European CA marked its signature keys as not being valid for
// signatures. A different CA marked its own trusted root certificate
// as being invalid for certificate signing. Another national CA
// distributed a certificate to be used to encrypt data for the
// countrys tax authority that was marked as only being usable for
// digital signatures but not for encryption. Yet another CA reversed
// the order of the bit flags in the keyUsage due to confusion over
// encoding endianness, essentially setting a random keyUsage in
// certificates that it issued. Another CA created a self-invalidating
// certificate by adding a certificate policy statement stipulating
// that the certificate had to be used strictly as specified in the
// keyUsage, and a keyUsage containing a flag indicating that the RSA
// encryption key could only be used for Diffie-Hellman key agreement.
if certType == intermediateCertificate && (!c.BasicConstraintsValid || !c.IsCA) {
return CertificateInvalidError{c, NotAuthorizedToSign}
}
if c.BasicConstraintsValid && c.MaxPathLen >= 0 {
numIntermediates := len(currentChain) - 1
if numIntermediates > c.MaxPathLen {
return CertificateInvalidError{c, TooManyIntermediates}
}
}
return nil
}
// Verify attempts to verify c by building one or more chains from c to a
// certificate in opts.Roots, using certificates in opts.Intermediates if
// needed. If successful, it returns one or more chains where the first
// element of the chain is c and the last element is from opts.Roots.
//
// If opts.Roots is nil and system roots are unavailable the returned error
// will be of type SystemRootsError.
//
// WARNING: this doesn't do any revocation checking.
func (c *Certificate) Verify(opts VerifyOptions) (chains [][]*Certificate, err error) {
// Use Windows's own verification and chain building.
if opts.Roots == nil && runtime.GOOS == "windows" {
return c.systemVerify(&opts)
}
if len(c.UnhandledCriticalExtensions) > 0 {
return nil, UnhandledCriticalExtension{}
}
if opts.Roots == nil {
opts.Roots = systemRootsPool()
if opts.Roots == nil {
return nil, SystemRootsError{}
}
}
err = c.isValid(leafCertificate, nil, &opts)
if err != nil {
return
}
if len(opts.DNSName) > 0 {
err = c.VerifyHostname(opts.DNSName)
if err != nil {
return
}
}
candidateChains, err := c.buildChains(make(map[int][][]*Certificate), []*Certificate{c}, &opts)
if err != nil {
return
}
keyUsages := opts.KeyUsages
if len(keyUsages) == 0 {
keyUsages = []ExtKeyUsage{ExtKeyUsageServerAuth}
}
// If any key usage is acceptable then we're done.
for _, usage := range keyUsages {
if usage == ExtKeyUsageAny {
chains = candidateChains
return
}
}
for _, candidate := range candidateChains {
if checkChainForKeyUsage(candidate, keyUsages) {
chains = append(chains, candidate)
}
}
if len(chains) == 0 {
err = CertificateInvalidError{c, IncompatibleUsage}
}
return
}
func appendToFreshChain(chain []*Certificate, cert *Certificate) []*Certificate {
n := make([]*Certificate, len(chain)+1)
copy(n, chain)
n[len(chain)] = cert
return n
}
func (c *Certificate) buildChains(cache map[int][][]*Certificate, currentChain []*Certificate, opts *VerifyOptions) (chains [][]*Certificate, err error) {
possibleRoots, failedRoot, rootErr := opts.Roots.findVerifiedParents(c)
for _, rootNum := range possibleRoots {
root := opts.Roots.certs[rootNum]
err = root.isValid(rootCertificate, currentChain, opts)
if err != nil {
continue
}
chains = append(chains, appendToFreshChain(currentChain, root))
}
possibleIntermediates, failedIntermediate, intermediateErr := opts.Intermediates.findVerifiedParents(c)
nextIntermediate:
for _, intermediateNum := range possibleIntermediates {
intermediate := opts.Intermediates.certs[intermediateNum]
for _, cert := range currentChain {
if cert == intermediate {
continue nextIntermediate
}
}
err = intermediate.isValid(intermediateCertificate, currentChain, opts)
if err != nil {
continue
}
var childChains [][]*Certificate
childChains, ok := cache[intermediateNum]
if !ok {
childChains, err = intermediate.buildChains(cache, appendToFreshChain(currentChain, intermediate), opts)
cache[intermediateNum] = childChains
}
chains = append(chains, childChains...)
}
if len(chains) > 0 {
err = nil
}
if len(chains) == 0 && err == nil {
hintErr := rootErr
hintCert := failedRoot
if hintErr == nil {
hintErr = intermediateErr
hintCert = failedIntermediate
}
err = UnknownAuthorityError{c, hintErr, hintCert}
}
return
}
func matchHostnames(pattern, host string) bool {
host = strings.TrimSuffix(host, ".")
pattern = strings.TrimSuffix(pattern, ".")
if len(pattern) == 0 || len(host) == 0 {
return false
}
patternParts := strings.Split(pattern, ".")
hostParts := strings.Split(host, ".")
if len(patternParts) != len(hostParts) {
return false
}
for i, patternPart := range patternParts {
if i == 0 && patternPart == "*" {
continue
}
if patternPart != hostParts[i] {
return false
}
}
return true
}
// toLowerCaseASCII returns a lower-case version of in. See RFC 6125 6.4.1. We use
// an explicitly ASCII function to avoid any sharp corners resulting from
// performing Unicode operations on DNS labels.
func toLowerCaseASCII(in string) string {
// If the string is already lower-case then there's nothing to do.
isAlreadyLowerCase := true
for _, c := range in {
if c == utf8.RuneError {
// If we get a UTF-8 error then there might be
// upper-case ASCII bytes in the invalid sequence.
isAlreadyLowerCase = false
break
}
if 'A' <= c && c <= 'Z' {
isAlreadyLowerCase = false
break
}
}
if isAlreadyLowerCase {
return in
}
out := []byte(in)
for i, c := range out {
if 'A' <= c && c <= 'Z' {
out[i] += 'a' - 'A'
}
}
return string(out)
}
// VerifyHostname returns nil if c is a valid certificate for the named host.
// Otherwise it returns an error describing the mismatch.
func (c *Certificate) VerifyHostname(h string) error {
// IP addresses may be written in [ ].
candidateIP := h
if len(h) >= 3 && h[0] == '[' && h[len(h)-1] == ']' {
candidateIP = h[1 : len(h)-1]
}
if ip := net.ParseIP(candidateIP); ip != nil {
// We only match IP addresses against IP SANs.
// https://tools.ietf.org/html/rfc6125#appendix-B.2
for _, candidate := range c.IPAddresses {
if ip.Equal(candidate) {
return nil
}
}
return HostnameError{c, candidateIP}
}
lowered := toLowerCaseASCII(h)
if len(c.DNSNames) > 0 {
for _, match := range c.DNSNames {
if matchHostnames(toLowerCaseASCII(match), lowered) {
return nil
}
}
// If Subject Alt Name is given, we ignore the common name.
} else if matchHostnames(toLowerCaseASCII(c.Subject.CommonName), lowered) {
return nil
}
return HostnameError{c, h}
}
func checkChainForKeyUsage(chain []*Certificate, keyUsages []ExtKeyUsage) bool {
usages := make([]ExtKeyUsage, len(keyUsages))
copy(usages, keyUsages)
if len(chain) == 0 {
return false
}
usagesRemaining := len(usages)
// We walk down the list and cross out any usages that aren't supported
// by each certificate. If we cross out all the usages, then the chain
// is unacceptable.
NextCert:
for i := len(chain) - 1; i >= 0; i-- {
cert := chain[i]
if len(cert.ExtKeyUsage) == 0 && len(cert.UnknownExtKeyUsage) == 0 {
// The certificate doesn't have any extended key usage specified.
continue
}
for _, usage := range cert.ExtKeyUsage {
if usage == ExtKeyUsageAny {
// The certificate is explicitly good for any usage.
continue NextCert
}
}
const invalidUsage ExtKeyUsage = -1
NextRequestedUsage:
for i, requestedUsage := range usages {
if requestedUsage == invalidUsage {
continue
}
for _, usage := range cert.ExtKeyUsage {
if requestedUsage == usage {
continue NextRequestedUsage
} else if requestedUsage == ExtKeyUsageServerAuth &&
(usage == ExtKeyUsageNetscapeServerGatedCrypto ||
usage == ExtKeyUsageMicrosoftServerGatedCrypto) {
// In order to support COMODO
// certificate chains, we have to
// accept Netscape or Microsoft SGC
// usages as equal to ServerAuth.
continue NextRequestedUsage
}
}
usages[i] = invalidUsage
usagesRemaining--
if usagesRemaining == 0 {
return false
}
}
}
return true
}

2028
vendor/github.com/letsencrypt/go/src/crypto/x509/x509.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,53 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
// This file is run by the x509 tests to ensure that a program with minimal
// imports can sign certificates without errors resulting from missing hash
// functions.
package main
import (
"crypto/rand"
"crypto/x509"
"github.com/letsencrypt/go/src/crypto/x509/pkix"
"encoding/pem"
"math/big"
"time"
)
func main() {
block, _ := pem.Decode([]byte(pemPrivateKey))
rsaPriv, err := x509.ParsePKCS1PrivateKey(block.Bytes)
if err != nil {
panic("Failed to parse private key: " + err.Error())
}
template := x509.Certificate{
SerialNumber: big.NewInt(1),
Subject: pkix.Name{
CommonName: "test",
Organization: []string{"Σ Acme Co"},
},
NotBefore: time.Unix(1000, 0),
NotAfter: time.Unix(100000, 0),
KeyUsage: x509.KeyUsageCertSign,
}
if _, err = x509.CreateCertificate(rand.Reader, &template, &template, &rsaPriv.PublicKey, rsaPriv); err != nil {
panic("failed to create certificate with basic imports: " + err.Error())
}
}
var pemPrivateKey = `-----BEGIN RSA PRIVATE KEY-----
MIIBOgIBAAJBALKZD0nEffqM1ACuak0bijtqE2QrI/KLADv7l3kK3ppMyCuLKoF0
fd7Ai2KW5ToIwzFofvJcS/STa6HA5gQenRUCAwEAAQJBAIq9amn00aS0h/CrjXqu
/ThglAXJmZhOMPVn4eiu7/ROixi9sex436MaVeMqSNf7Ex9a8fRNfWss7Sqd9eWu
RTUCIQDasvGASLqmjeffBNLTXV2A5g4t+kLVCpsEIZAycV5GswIhANEPLmax0ME/
EO+ZJ79TJKN5yiGBRsv5yvx5UiHxajEXAiAhAol5N4EUyq6I9w1rYdhPMGpLfk7A
IU2snfRJ6Nq2CQIgFrPsWRCkV+gOYcajD17rEqmuLrdIRexpg8N1DOSXoJ8CIGlS
tAboUGBxTDq3ZroNism3DaMIbKPyYrAqhKov1h5V
-----END RSA PRIVATE KEY-----
`

View File

@ -0,0 +1,962 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package asn1 implements parsing of DER-encoded ASN.1 data structures,
// as defined in ITU-T Rec X.690.
//
// See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,''
// http://luca.ntop.org/Teaching/Appunti/asn1.html.
package asn1
// ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc
// are different encoding formats for those objects. Here, we'll be dealing
// with DER, the Distinguished Encoding Rules. DER is used in X.509 because
// it's fast to parse and, unlike BER, has a unique encoding for every object.
// When calculating hashes over objects, it's important that the resulting
// bytes be the same at both ends and DER removes this margin of error.
//
// ASN.1 is very complex and this package doesn't attempt to implement
// everything by any means.
import (
"errors"
"fmt"
"math/big"
"reflect"
"strconv"
"time"
"unicode/utf8"
)
// A StructuralError suggests that the ASN.1 data is valid, but the Go type
// which is receiving it doesn't match.
type StructuralError struct {
Msg string
}
func (e StructuralError) Error() string { return "asn1: structure error: " + e.Msg }
// A SyntaxError suggests that the ASN.1 data is invalid.
type SyntaxError struct {
Msg string
}
func (e SyntaxError) Error() string { return "asn1: syntax error: " + e.Msg }
// We start by dealing with each of the primitive types in turn.
// BOOLEAN
func parseBool(bytes []byte) (ret bool, err error) {
if len(bytes) != 1 {
err = SyntaxError{"invalid boolean"}
return
}
// DER demands that "If the encoding represents the boolean value TRUE,
// its single contents octet shall have all eight bits set to one."
// Thus only 0 and 255 are valid encoded values.
switch bytes[0] {
case 0:
ret = false
case 0xff:
ret = true
default:
err = SyntaxError{"invalid boolean"}
}
return
}
// INTEGER
// parseInt64 treats the given bytes as a big-endian, signed integer and
// returns the result.
func parseInt64(bytes []byte) (ret int64, err error) {
if len(bytes) > 8 {
// We'll overflow an int64 in this case.
err = StructuralError{"integer too large"}
return
}
for bytesRead := 0; bytesRead < len(bytes); bytesRead++ {
ret <<= 8
ret |= int64(bytes[bytesRead])
}
// Shift up and down in order to sign extend the result.
ret <<= 64 - uint8(len(bytes))*8
ret >>= 64 - uint8(len(bytes))*8
return
}
// parseInt treats the given bytes as a big-endian, signed integer and returns
// the result.
func parseInt32(bytes []byte) (int32, error) {
ret64, err := parseInt64(bytes)
if err != nil {
return 0, err
}
if ret64 != int64(int32(ret64)) {
return 0, StructuralError{"integer too large"}
}
return int32(ret64), nil
}
var bigOne = big.NewInt(1)
// parseBigInt treats the given bytes as a big-endian, signed integer and returns
// the result.
func parseBigInt(bytes []byte) *big.Int {
ret := new(big.Int)
if len(bytes) > 0 && bytes[0]&0x80 == 0x80 {
// This is a negative number.
notBytes := make([]byte, len(bytes))
for i := range notBytes {
notBytes[i] = ^bytes[i]
}
ret.SetBytes(notBytes)
ret.Add(ret, bigOne)
ret.Neg(ret)
return ret
}
ret.SetBytes(bytes)
return ret
}
// BIT STRING
// BitString is the structure to use when you want an ASN.1 BIT STRING type. A
// bit string is padded up to the nearest byte in memory and the number of
// valid bits is recorded. Padding bits will be zero.
type BitString struct {
Bytes []byte // bits packed into bytes.
BitLength int // length in bits.
}
// At returns the bit at the given index. If the index is out of range it
// returns false.
func (b BitString) At(i int) int {
if i < 0 || i >= b.BitLength {
return 0
}
x := i / 8
y := 7 - uint(i%8)
return int(b.Bytes[x]>>y) & 1
}
// RightAlign returns a slice where the padding bits are at the beginning. The
// slice may share memory with the BitString.
func (b BitString) RightAlign() []byte {
shift := uint(8 - (b.BitLength % 8))
if shift == 8 || len(b.Bytes) == 0 {
return b.Bytes
}
a := make([]byte, len(b.Bytes))
a[0] = b.Bytes[0] >> shift
for i := 1; i < len(b.Bytes); i++ {
a[i] = b.Bytes[i-1] << (8 - shift)
a[i] |= b.Bytes[i] >> shift
}
return a
}
// parseBitString parses an ASN.1 bit string from the given byte slice and returns it.
func parseBitString(bytes []byte) (ret BitString, err error) {
if len(bytes) == 0 {
err = SyntaxError{"zero length BIT STRING"}
return
}
paddingBits := int(bytes[0])
if paddingBits > 7 ||
len(bytes) == 1 && paddingBits > 0 ||
bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 {
err = SyntaxError{"invalid padding bits in BIT STRING"}
return
}
ret.BitLength = (len(bytes)-1)*8 - paddingBits
ret.Bytes = bytes[1:]
return
}
// OBJECT IDENTIFIER
// An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER.
type ObjectIdentifier []int
// Equal reports whether oi and other represent the same identifier.
func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool {
if len(oi) != len(other) {
return false
}
for i := 0; i < len(oi); i++ {
if oi[i] != other[i] {
return false
}
}
return true
}
func (oi ObjectIdentifier) String() string {
var s string
for i, v := range oi {
if i > 0 {
s += "."
}
s += strconv.Itoa(v)
}
return s
}
// parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and
// returns it. An object identifier is a sequence of variable length integers
// that are assigned in a hierarchy.
func parseObjectIdentifier(bytes []byte) (s []int, err error) {
if len(bytes) == 0 {
err = SyntaxError{"zero length OBJECT IDENTIFIER"}
return
}
// In the worst case, we get two elements from the first byte (which is
// encoded differently) and then every varint is a single byte long.
s = make([]int, len(bytes)+1)
// The first varint is 40*value1 + value2:
// According to this packing, value1 can take the values 0, 1 and 2 only.
// When value1 = 0 or value1 = 1, then value2 is <= 39. When value1 = 2,
// then there are no restrictions on value2.
v, offset, err := parseBase128Int(bytes, 0)
if err != nil {
return
}
if v < 80 {
s[0] = v / 40
s[1] = v % 40
} else {
s[0] = 2
s[1] = v - 80
}
i := 2
for ; offset < len(bytes); i++ {
v, offset, err = parseBase128Int(bytes, offset)
if err != nil {
return
}
s[i] = v
}
s = s[0:i]
return
}
// ENUMERATED
// An Enumerated is represented as a plain int.
type Enumerated int
// FLAG
// A Flag accepts any data and is set to true if present.
type Flag bool
// parseBase128Int parses a base-128 encoded int from the given offset in the
// given byte slice. It returns the value and the new offset.
func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) {
offset = initOffset
for shifted := 0; offset < len(bytes); shifted++ {
if shifted > 4 {
err = StructuralError{"base 128 integer too large"}
return
}
ret <<= 7
b := bytes[offset]
ret |= int(b & 0x7f)
offset++
if b&0x80 == 0 {
return
}
}
err = SyntaxError{"truncated base 128 integer"}
return
}
// UTCTime
func parseUTCTime(bytes []byte) (ret time.Time, err error) {
s := string(bytes)
formatStr := "0601021504Z0700"
ret, err = time.Parse(formatStr, s)
if err != nil {
formatStr = "060102150405Z0700"
ret, err = time.Parse(formatStr, s)
}
if err != nil {
return
}
if serialized := ret.Format(formatStr); serialized != s {
err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
return
}
if ret.Year() >= 2050 {
// UTCTime only encodes times prior to 2050. See https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1
ret = ret.AddDate(-100, 0, 0)
}
return
}
// parseGeneralizedTime parses the GeneralizedTime from the given byte slice
// and returns the resulting time.
func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) {
const formatStr = "20060102150405Z0700"
s := string(bytes)
if ret, err = time.Parse(formatStr, s); err != nil {
return
}
if serialized := ret.Format(formatStr); serialized != s {
err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
}
return
}
// PrintableString
// parsePrintableString parses a ASN.1 PrintableString from the given byte
// array and returns it.
func parsePrintableString(bytes []byte) (ret string, err error) {
for _, b := range bytes {
if !isPrintable(b) {
err = SyntaxError{"PrintableString contains invalid character"}
return
}
}
ret = string(bytes)
return
}
// isPrintable reports whether the given b is in the ASN.1 PrintableString set.
func isPrintable(b byte) bool {
return 'a' <= b && b <= 'z' ||
'A' <= b && b <= 'Z' ||
'0' <= b && b <= '9' ||
'\'' <= b && b <= ')' ||
'+' <= b && b <= '/' ||
b == ' ' ||
b == ':' ||
b == '=' ||
b == '?' ||
// This is technically not allowed in a PrintableString.
// However, x509 certificates with wildcard strings don't
// always use the correct string type so we permit it.
b == '*'
}
// IA5String
// parseIA5String parses a ASN.1 IA5String (ASCII string) from the given
// byte slice and returns it.
func parseIA5String(bytes []byte) (ret string, err error) {
for _, b := range bytes {
if b >= 0x80 {
err = SyntaxError{"IA5String contains invalid character"}
return
}
}
ret = string(bytes)
return
}
// T61String
// parseT61String parses a ASN.1 T61String (8-bit clean string) from the given
// byte slice and returns it.
func parseT61String(bytes []byte) (ret string, err error) {
return string(bytes), nil
}
// UTF8String
// parseUTF8String parses a ASN.1 UTF8String (raw UTF-8) from the given byte
// array and returns it.
func parseUTF8String(bytes []byte) (ret string, err error) {
if !utf8.Valid(bytes) {
return "", errors.New("asn1: invalid UTF-8 string")
}
return string(bytes), nil
}
// A RawValue represents an undecoded ASN.1 object.
type RawValue struct {
Class, Tag int
IsCompound bool
Bytes []byte
FullBytes []byte // includes the tag and length
}
// RawContent is used to signal that the undecoded, DER data needs to be
// preserved for a struct. To use it, the first field of the struct must have
// this type. It's an error for any of the other fields to have this type.
type RawContent []byte
// Tagging
// parseTagAndLength parses an ASN.1 tag and length pair from the given offset
// into a byte slice. It returns the parsed data and the new offset. SET and
// SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we
// don't distinguish between ordered and unordered objects in this code.
func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err error) {
offset = initOffset
// parseTagAndLength should not be called without at least a single
// byte to read. Thus this check is for robustness:
if offset >= len(bytes) {
err = errors.New("asn1: internal error in parseTagAndLength")
return
}
b := bytes[offset]
offset++
ret.class = int(b >> 6)
ret.isCompound = b&0x20 == 0x20
ret.tag = int(b & 0x1f)
// If the bottom five bits are set, then the tag number is actually base 128
// encoded afterwards
if ret.tag == 0x1f {
ret.tag, offset, err = parseBase128Int(bytes, offset)
if err != nil {
return
}
}
if offset >= len(bytes) {
err = SyntaxError{"truncated tag or length"}
return
}
b = bytes[offset]
offset++
if b&0x80 == 0 {
// The length is encoded in the bottom 7 bits.
ret.length = int(b & 0x7f)
} else {
// Bottom 7 bits give the number of length bytes to follow.
numBytes := int(b & 0x7f)
if numBytes == 0 {
err = SyntaxError{"indefinite length found (not DER)"}
return
}
ret.length = 0
for i := 0; i < numBytes; i++ {
if offset >= len(bytes) {
err = SyntaxError{"truncated tag or length"}
return
}
b = bytes[offset]
offset++
if ret.length >= 1<<23 {
// We can't shift ret.length up without
// overflowing.
err = StructuralError{"length too large"}
return
}
ret.length <<= 8
ret.length |= int(b)
if ret.length == 0 {
// DER requires that lengths be minimal.
err = StructuralError{"superfluous leading zeros in length"}
return
}
}
}
return
}
// parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse
// a number of ASN.1 values from the given byte slice and returns them as a
// slice of Go values of the given type.
func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type) (ret reflect.Value, err error) {
expectedTag, compoundType, ok := getUniversalType(elemType)
if !ok {
err = StructuralError{"unknown Go type for slice"}
return
}
// First we iterate over the input and count the number of elements,
// checking that the types are correct in each case.
numElements := 0
for offset := 0; offset < len(bytes); {
var t tagAndLength
t, offset, err = parseTagAndLength(bytes, offset)
if err != nil {
return
}
switch t.tag {
case tagIA5String, tagGeneralString, tagT61String, tagUTF8String:
// We pretend that various other string types are
// PRINTABLE STRINGs so that a sequence of them can be
// parsed into a []string.
t.tag = tagPrintableString
case tagGeneralizedTime, tagUTCTime:
// Likewise, both time types are treated the same.
t.tag = tagUTCTime
}
if t.class != classUniversal || t.isCompound != compoundType || t.tag != expectedTag {
err = StructuralError{"sequence tag mismatch"}
return
}
if invalidLength(offset, t.length, len(bytes)) {
err = SyntaxError{"truncated sequence"}
return
}
offset += t.length
numElements++
}
ret = reflect.MakeSlice(sliceType, numElements, numElements)
params := fieldParameters{}
offset := 0
for i := 0; i < numElements; i++ {
offset, err = parseField(ret.Index(i), bytes, offset, params)
if err != nil {
return
}
}
return
}
var (
bitStringType = reflect.TypeOf(BitString{})
objectIdentifierType = reflect.TypeOf(ObjectIdentifier{})
enumeratedType = reflect.TypeOf(Enumerated(0))
flagType = reflect.TypeOf(Flag(false))
timeType = reflect.TypeOf(time.Time{})
rawValueType = reflect.TypeOf(RawValue{})
rawContentsType = reflect.TypeOf(RawContent(nil))
bigIntType = reflect.TypeOf(new(big.Int))
)
// invalidLength returns true iff offset + length > sliceLength, or if the
// addition would overflow.
func invalidLength(offset, length, sliceLength int) bool {
return offset+length < offset || offset+length > sliceLength
}
// parseField is the main parsing function. Given a byte slice and an offset
// into the array, it will try to parse a suitable ASN.1 value out and store it
// in the given Value.
func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err error) {
offset = initOffset
fieldType := v.Type()
// If we have run out of data, it may be that there are optional elements at the end.
if offset == len(bytes) {
if !setDefaultValue(v, params) {
err = SyntaxError{"sequence truncated"}
}
return
}
// Deal with raw values.
if fieldType == rawValueType {
var t tagAndLength
t, offset, err = parseTagAndLength(bytes, offset)
if err != nil {
return
}
if invalidLength(offset, t.length, len(bytes)) {
err = SyntaxError{"data truncated"}
return
}
result := RawValue{t.class, t.tag, t.isCompound, bytes[offset : offset+t.length], bytes[initOffset : offset+t.length]}
offset += t.length
v.Set(reflect.ValueOf(result))
return
}
// Deal with the ANY type.
if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 {
var t tagAndLength
t, offset, err = parseTagAndLength(bytes, offset)
if err != nil {
return
}
if invalidLength(offset, t.length, len(bytes)) {
err = SyntaxError{"data truncated"}
return
}
var result interface{}
if !t.isCompound && t.class == classUniversal {
innerBytes := bytes[offset : offset+t.length]
switch t.tag {
case tagPrintableString:
result, err = parsePrintableString(innerBytes)
case tagIA5String:
result, err = parseIA5String(innerBytes)
case tagT61String:
result, err = parseT61String(innerBytes)
case tagUTF8String:
result, err = parseUTF8String(innerBytes)
case tagInteger:
result, err = parseInt64(innerBytes)
case tagBitString:
result, err = parseBitString(innerBytes)
case tagOID:
result, err = parseObjectIdentifier(innerBytes)
case tagUTCTime:
result, err = parseUTCTime(innerBytes)
case tagGeneralizedTime:
result, err = parseGeneralizedTime(innerBytes)
case tagOctetString:
result = innerBytes
default:
// If we don't know how to handle the type, we just leave Value as nil.
}
}
offset += t.length
if err != nil {
return
}
if result != nil {
v.Set(reflect.ValueOf(result))
}
return
}
universalTag, compoundType, ok1 := getUniversalType(fieldType)
if !ok1 {
err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)}
return
}
t, offset, err := parseTagAndLength(bytes, offset)
if err != nil {
return
}
if params.explicit {
expectedClass := classContextSpecific
if params.application {
expectedClass = classApplication
}
if offset == len(bytes) {
err = StructuralError{"explicit tag has no child"}
return
}
if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) {
if t.length > 0 {
t, offset, err = parseTagAndLength(bytes, offset)
if err != nil {
return
}
} else {
if fieldType != flagType {
err = StructuralError{"zero length explicit tag was not an asn1.Flag"}
return
}
v.SetBool(true)
return
}
} else {
// The tags didn't match, it might be an optional element.
ok := setDefaultValue(v, params)
if ok {
offset = initOffset
} else {
err = StructuralError{"explicitly tagged member didn't match"}
}
return
}
}
// Special case for strings: all the ASN.1 string types map to the Go
// type string. getUniversalType returns the tag for PrintableString
// when it sees a string, so if we see a different string type on the
// wire, we change the universal type to match.
if universalTag == tagPrintableString {
if t.class == classUniversal {
switch t.tag {
case tagIA5String, tagGeneralString, tagT61String, tagUTF8String:
universalTag = t.tag
}
} else if params.stringType != 0 {
universalTag = params.stringType
}
}
// Special case for time: UTCTime and GeneralizedTime both map to the
// Go type time.Time.
if universalTag == tagUTCTime && t.tag == tagGeneralizedTime && t.class == classUniversal {
universalTag = tagGeneralizedTime
}
if params.set {
universalTag = tagSet
}
expectedClass := classUniversal
expectedTag := universalTag
if !params.explicit && params.tag != nil {
expectedClass = classContextSpecific
expectedTag = *params.tag
}
if !params.explicit && params.application && params.tag != nil {
expectedClass = classApplication
expectedTag = *params.tag
}
// We have unwrapped any explicit tagging at this point.
if t.class != expectedClass || t.tag != expectedTag || t.isCompound != compoundType {
// Tags don't match. Again, it could be an optional element.
ok := setDefaultValue(v, params)
if ok {
offset = initOffset
} else {
err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)}
}
return
}
if invalidLength(offset, t.length, len(bytes)) {
err = SyntaxError{"data truncated"}
return
}
innerBytes := bytes[offset : offset+t.length]
offset += t.length
// We deal with the structures defined in this package first.
switch fieldType {
case objectIdentifierType:
newSlice, err1 := parseObjectIdentifier(innerBytes)
v.Set(reflect.MakeSlice(v.Type(), len(newSlice), len(newSlice)))
if err1 == nil {
reflect.Copy(v, reflect.ValueOf(newSlice))
}
err = err1
return
case bitStringType:
bs, err1 := parseBitString(innerBytes)
if err1 == nil {
v.Set(reflect.ValueOf(bs))
}
err = err1
return
case timeType:
var time time.Time
var err1 error
if universalTag == tagUTCTime {
time, err1 = parseUTCTime(innerBytes)
} else {
time, err1 = parseGeneralizedTime(innerBytes)
}
if err1 == nil {
v.Set(reflect.ValueOf(time))
}
err = err1
return
case enumeratedType:
parsedInt, err1 := parseInt32(innerBytes)
if err1 == nil {
v.SetInt(int64(parsedInt))
}
err = err1
return
case flagType:
v.SetBool(true)
return
case bigIntType:
parsedInt := parseBigInt(innerBytes)
v.Set(reflect.ValueOf(parsedInt))
return
}
switch val := v; val.Kind() {
case reflect.Bool:
parsedBool, err1 := parseBool(innerBytes)
if err1 == nil {
val.SetBool(parsedBool)
}
err = err1
return
case reflect.Int, reflect.Int32, reflect.Int64:
if val.Type().Size() == 4 {
parsedInt, err1 := parseInt32(innerBytes)
if err1 == nil {
val.SetInt(int64(parsedInt))
}
err = err1
} else {
parsedInt, err1 := parseInt64(innerBytes)
if err1 == nil {
val.SetInt(parsedInt)
}
err = err1
}
return
// TODO(dfc) Add support for the remaining integer types
case reflect.Struct:
structType := fieldType
if structType.NumField() > 0 &&
structType.Field(0).Type == rawContentsType {
bytes := bytes[initOffset:offset]
val.Field(0).Set(reflect.ValueOf(RawContent(bytes)))
}
innerOffset := 0
for i := 0; i < structType.NumField(); i++ {
field := structType.Field(i)
if i == 0 && field.Type == rawContentsType {
continue
}
innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag.Get("asn1")))
if err != nil {
return
}
}
// We allow extra bytes at the end of the SEQUENCE because
// adding elements to the end has been used in X.509 as the
// version numbers have increased.
return
case reflect.Slice:
sliceType := fieldType
if sliceType.Elem().Kind() == reflect.Uint8 {
val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes)))
reflect.Copy(val, reflect.ValueOf(innerBytes))
return
}
newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem())
if err1 == nil {
val.Set(newSlice)
}
err = err1
return
case reflect.String:
var v string
switch universalTag {
case tagPrintableString:
v, err = parsePrintableString(innerBytes)
case tagIA5String:
v, err = parseIA5String(innerBytes)
case tagT61String:
v, err = parseT61String(innerBytes)
case tagUTF8String:
v, err = parseUTF8String(innerBytes)
case tagGeneralString:
// GeneralString is specified in ISO-2022/ECMA-35,
// A brief review suggests that it includes structures
// that allow the encoding to change midstring and
// such. We give up and pass it as an 8-bit string.
v, err = parseT61String(innerBytes)
default:
err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)}
}
if err == nil {
val.SetString(v)
}
return
}
err = StructuralError{"unsupported: " + v.Type().String()}
return
}
// canHaveDefaultValue reports whether k is a Kind that we will set a default
// value for. (A signed integer, essentially.)
func canHaveDefaultValue(k reflect.Kind) bool {
switch k {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return true
}
return false
}
// setDefaultValue is used to install a default value, from a tag string, into
// a Value. It is successful if the field was optional, even if a default value
// wasn't provided or it failed to install it into the Value.
func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) {
if !params.optional {
return
}
ok = true
if params.defaultValue == nil {
return
}
if canHaveDefaultValue(v.Kind()) {
v.SetInt(*params.defaultValue)
}
return
}
// Unmarshal parses the DER-encoded ASN.1 data structure b
// and uses the reflect package to fill in an arbitrary value pointed at by val.
// Because Unmarshal uses the reflect package, the structs
// being written to must use upper case field names.
//
// An ASN.1 INTEGER can be written to an int, int32, int64,
// or *big.Int (from the math/big package).
// If the encoded value does not fit in the Go type,
// Unmarshal returns a parse error.
//
// An ASN.1 BIT STRING can be written to a BitString.
//
// An ASN.1 OCTET STRING can be written to a []byte.
//
// An ASN.1 OBJECT IDENTIFIER can be written to an
// ObjectIdentifier.
//
// An ASN.1 ENUMERATED can be written to an Enumerated.
//
// An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time.
//
// An ASN.1 PrintableString or IA5String can be written to a string.
//
// Any of the above ASN.1 values can be written to an interface{}.
// The value stored in the interface has the corresponding Go type.
// For integers, that type is int64.
//
// An ASN.1 SEQUENCE OF x or SET OF x can be written
// to a slice if an x can be written to the slice's element type.
//
// An ASN.1 SEQUENCE or SET can be written to a struct
// if each of the elements in the sequence can be
// written to the corresponding element in the struct.
//
// The following tags on struct fields have special meaning to Unmarshal:
//
// application specifies that a APPLICATION tag is used
// default:x sets the default value for optional integer fields
// explicit specifies that an additional, explicit tag wraps the implicit one
// optional marks the field as ASN.1 OPTIONAL
// set causes a SET, rather than a SEQUENCE type to be expected
// tag:x specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC
//
// If the type of the first field of a structure is RawContent then the raw
// ASN1 contents of the struct will be stored in it.
//
// If the type name of a slice element ends with "SET" then it's treated as if
// the "set" tag was set on it. This can be used with nested slices where a
// struct tag cannot be given.
//
// Other ASN.1 types are not supported; if it encounters them,
// Unmarshal returns a parse error.
func Unmarshal(b []byte, val interface{}) (rest []byte, err error) {
return UnmarshalWithParams(b, val, "")
}
// UnmarshalWithParams allows field parameters to be specified for the
// top-level element. The form of the params is the same as the field tags.
func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error) {
v := reflect.ValueOf(val).Elem()
offset, err := parseField(v, b, 0, parseFieldParameters(params))
if err != nil {
return nil, err
}
return b[offset:], nil
}

View File

@ -0,0 +1,168 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package asn1
import (
"reflect"
"strconv"
"strings"
)
// ASN.1 objects have metadata preceding them:
// the tag: the type of the object
// a flag denoting if this object is compound or not
// the class type: the namespace of the tag
// the length of the object, in bytes
// Here are some standard tags and classes
const (
tagBoolean = 1
tagInteger = 2
tagBitString = 3
tagOctetString = 4
tagOID = 6
tagEnum = 10
tagUTF8String = 12
tagSequence = 16
tagSet = 17
tagPrintableString = 19
tagT61String = 20
tagIA5String = 22
tagUTCTime = 23
tagGeneralizedTime = 24
tagGeneralString = 27
)
const (
classUniversal = 0
classApplication = 1
classContextSpecific = 2
classPrivate = 3
)
type tagAndLength struct {
class, tag, length int
isCompound bool
}
// ASN.1 has IMPLICIT and EXPLICIT tags, which can be translated as "instead
// of" and "in addition to". When not specified, every primitive type has a
// default tag in the UNIVERSAL class.
//
// For example: a BIT STRING is tagged [UNIVERSAL 3] by default (although ASN.1
// doesn't actually have a UNIVERSAL keyword). However, by saying [IMPLICIT
// CONTEXT-SPECIFIC 42], that means that the tag is replaced by another.
//
// On the other hand, if it said [EXPLICIT CONTEXT-SPECIFIC 10], then an
// /additional/ tag would wrap the default tag. This explicit tag will have the
// compound flag set.
//
// (This is used in order to remove ambiguity with optional elements.)
//
// You can layer EXPLICIT and IMPLICIT tags to an arbitrary depth, however we
// don't support that here. We support a single layer of EXPLICIT or IMPLICIT
// tagging with tag strings on the fields of a structure.
// fieldParameters is the parsed representation of tag string from a structure field.
type fieldParameters struct {
optional bool // true iff the field is OPTIONAL
explicit bool // true iff an EXPLICIT tag is in use.
application bool // true iff an APPLICATION tag is in use.
defaultValue *int64 // a default value for INTEGER typed fields (maybe nil).
tag *int // the EXPLICIT or IMPLICIT tag (maybe nil).
stringType int // the string tag to use when marshaling.
timeType int // the time tag to use when marshaling.
set bool // true iff this should be encoded as a SET
omitEmpty bool // true iff this should be omitted if empty when marshaling.
// Invariants:
// if explicit is set, tag is non-nil.
}
// Given a tag string with the format specified in the package comment,
// parseFieldParameters will parse it into a fieldParameters structure,
// ignoring unknown parts of the string.
func parseFieldParameters(str string) (ret fieldParameters) {
for _, part := range strings.Split(str, ",") {
switch {
case part == "optional":
ret.optional = true
case part == "explicit":
ret.explicit = true
if ret.tag == nil {
ret.tag = new(int)
}
case part == "generalized":
ret.timeType = tagGeneralizedTime
case part == "utc":
ret.timeType = tagUTCTime
case part == "ia5":
ret.stringType = tagIA5String
case part == "printable":
ret.stringType = tagPrintableString
case part == "utf8":
ret.stringType = tagUTF8String
case strings.HasPrefix(part, "default:"):
i, err := strconv.ParseInt(part[8:], 10, 64)
if err == nil {
ret.defaultValue = new(int64)
*ret.defaultValue = i
}
case strings.HasPrefix(part, "tag:"):
i, err := strconv.Atoi(part[4:])
if err == nil {
ret.tag = new(int)
*ret.tag = i
}
case part == "set":
ret.set = true
case part == "application":
ret.application = true
if ret.tag == nil {
ret.tag = new(int)
}
case part == "omitempty":
ret.omitEmpty = true
}
}
return
}
// Given a reflected Go type, getUniversalType returns the default tag number
// and expected compound flag.
func getUniversalType(t reflect.Type) (tagNumber int, isCompound, ok bool) {
switch t {
case objectIdentifierType:
return tagOID, false, true
case bitStringType:
return tagBitString, false, true
case timeType:
return tagUTCTime, false, true
case enumeratedType:
return tagEnum, false, true
case bigIntType:
return tagInteger, false, true
}
switch t.Kind() {
case reflect.Bool:
return tagBoolean, false, true
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return tagInteger, false, true
case reflect.Struct:
return tagSequence, true, true
case reflect.Slice:
if t.Elem().Kind() == reflect.Uint8 {
return tagOctetString, false, true
}
if strings.HasSuffix(t.Name(), "SET") {
return tagSet, true, true
}
return tagSequence, true, true
case reflect.String:
return tagPrintableString, false, true
}
return 0, false, false
}

View File

@ -0,0 +1,652 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package asn1
import (
"bytes"
"errors"
"fmt"
"io"
"math/big"
"reflect"
"time"
"unicode/utf8"
)
// A forkableWriter is an in-memory buffer that can be
// 'forked' to create new forkableWriters that bracket the
// original. After
// pre, post := w.fork()
// the overall sequence of bytes represented is logically w+pre+post.
type forkableWriter struct {
*bytes.Buffer
pre, post *forkableWriter
}
func newForkableWriter() *forkableWriter {
return &forkableWriter{new(bytes.Buffer), nil, nil}
}
func (f *forkableWriter) fork() (pre, post *forkableWriter) {
if f.pre != nil || f.post != nil {
panic("have already forked")
}
f.pre = newForkableWriter()
f.post = newForkableWriter()
return f.pre, f.post
}
func (f *forkableWriter) Len() (l int) {
l += f.Buffer.Len()
if f.pre != nil {
l += f.pre.Len()
}
if f.post != nil {
l += f.post.Len()
}
return
}
func (f *forkableWriter) writeTo(out io.Writer) (n int, err error) {
n, err = out.Write(f.Bytes())
if err != nil {
return
}
var nn int
if f.pre != nil {
nn, err = f.pre.writeTo(out)
n += nn
if err != nil {
return
}
}
if f.post != nil {
nn, err = f.post.writeTo(out)
n += nn
}
return
}
func marshalBase128Int(out *forkableWriter, n int64) (err error) {
if n == 0 {
err = out.WriteByte(0)
return
}
l := 0
for i := n; i > 0; i >>= 7 {
l++
}
for i := l - 1; i >= 0; i-- {
o := byte(n >> uint(i*7))
o &= 0x7f
if i != 0 {
o |= 0x80
}
err = out.WriteByte(o)
if err != nil {
return
}
}
return nil
}
func marshalInt64(out *forkableWriter, i int64) (err error) {
n := int64Length(i)
for ; n > 0; n-- {
err = out.WriteByte(byte(i >> uint((n-1)*8)))
if err != nil {
return
}
}
return nil
}
func int64Length(i int64) (numBytes int) {
numBytes = 1
for i > 127 {
numBytes++
i >>= 8
}
for i < -128 {
numBytes++
i >>= 8
}
return
}
func marshalBigInt(out *forkableWriter, n *big.Int) (err error) {
if n.Sign() < 0 {
// A negative number has to be converted to two's-complement
// form. So we'll subtract 1 and invert. If the
// most-significant-bit isn't set then we'll need to pad the
// beginning with 0xff in order to keep the number negative.
nMinus1 := new(big.Int).Neg(n)
nMinus1.Sub(nMinus1, bigOne)
bytes := nMinus1.Bytes()
for i := range bytes {
bytes[i] ^= 0xff
}
if len(bytes) == 0 || bytes[0]&0x80 == 0 {
err = out.WriteByte(0xff)
if err != nil {
return
}
}
_, err = out.Write(bytes)
} else if n.Sign() == 0 {
// Zero is written as a single 0 zero rather than no bytes.
err = out.WriteByte(0x00)
} else {
bytes := n.Bytes()
if len(bytes) > 0 && bytes[0]&0x80 != 0 {
// We'll have to pad this with 0x00 in order to stop it
// looking like a negative number.
err = out.WriteByte(0)
if err != nil {
return
}
}
_, err = out.Write(bytes)
}
return
}
func marshalLength(out *forkableWriter, i int) (err error) {
n := lengthLength(i)
for ; n > 0; n-- {
err = out.WriteByte(byte(i >> uint((n-1)*8)))
if err != nil {
return
}
}
return nil
}
func lengthLength(i int) (numBytes int) {
numBytes = 1
for i > 255 {
numBytes++
i >>= 8
}
return
}
func marshalTagAndLength(out *forkableWriter, t tagAndLength) (err error) {
b := uint8(t.class) << 6
if t.isCompound {
b |= 0x20
}
if t.tag >= 31 {
b |= 0x1f
err = out.WriteByte(b)
if err != nil {
return
}
err = marshalBase128Int(out, int64(t.tag))
if err != nil {
return
}
} else {
b |= uint8(t.tag)
err = out.WriteByte(b)
if err != nil {
return
}
}
if t.length >= 128 {
l := lengthLength(t.length)
err = out.WriteByte(0x80 | byte(l))
if err != nil {
return
}
err = marshalLength(out, t.length)
if err != nil {
return
}
} else {
err = out.WriteByte(byte(t.length))
if err != nil {
return
}
}
return nil
}
func marshalBitString(out *forkableWriter, b BitString) (err error) {
paddingBits := byte((8 - b.BitLength%8) % 8)
err = out.WriteByte(paddingBits)
if err != nil {
return
}
_, err = out.Write(b.Bytes)
return
}
func marshalObjectIdentifier(out *forkableWriter, oid []int) (err error) {
if len(oid) < 2 || oid[0] > 2 || (oid[0] < 2 && oid[1] >= 40) {
return StructuralError{"invalid object identifier"}
}
err = marshalBase128Int(out, int64(oid[0]*40+oid[1]))
if err != nil {
return
}
for i := 2; i < len(oid); i++ {
err = marshalBase128Int(out, int64(oid[i]))
if err != nil {
return
}
}
return
}
func marshalPrintableString(out *forkableWriter, s string) (err error) {
b := []byte(s)
for _, c := range b {
if !isPrintable(c) {
return StructuralError{"PrintableString contains invalid character"}
}
}
_, err = out.Write(b)
return
}
func marshalIA5String(out *forkableWriter, s string) (err error) {
b := []byte(s)
for _, c := range b {
if c > 127 {
return StructuralError{"IA5String contains invalid character"}
}
}
_, err = out.Write(b)
return
}
func marshalUTF8String(out *forkableWriter, s string) (err error) {
_, err = out.Write([]byte(s))
return
}
func marshalTwoDigits(out *forkableWriter, v int) (err error) {
err = out.WriteByte(byte('0' + (v/10)%10))
if err != nil {
return
}
return out.WriteByte(byte('0' + v%10))
}
func marshalFourDigits(out *forkableWriter, v int) (err error) {
var bytes [4]byte
for i := range bytes {
bytes[3-i] = '0' + byte(v%10)
v /= 10
}
_, err = out.Write(bytes[:])
return
}
func outsideUTCRange(t time.Time) bool {
year := t.Year()
return year < 1950 || year >= 2050
}
func marshalUTCTime(out *forkableWriter, t time.Time) (err error) {
year := t.Year()
switch {
case 1950 <= year && year < 2000:
err = marshalTwoDigits(out, int(year-1900))
case 2000 <= year && year < 2050:
err = marshalTwoDigits(out, int(year-2000))
default:
return StructuralError{"cannot represent time as UTCTime"}
}
if err != nil {
return
}
return marshalTimeCommon(out, t)
}
func marshalGeneralizedTime(out *forkableWriter, t time.Time) (err error) {
year := t.Year()
if year < 0 || year > 9999 {
return StructuralError{"cannot represent time as GeneralizedTime"}
}
if err = marshalFourDigits(out, year); err != nil {
return
}
return marshalTimeCommon(out, t)
}
func marshalTimeCommon(out *forkableWriter, t time.Time) (err error) {
_, month, day := t.Date()
err = marshalTwoDigits(out, int(month))
if err != nil {
return
}
err = marshalTwoDigits(out, day)
if err != nil {
return
}
hour, min, sec := t.Clock()
err = marshalTwoDigits(out, hour)
if err != nil {
return
}
err = marshalTwoDigits(out, min)
if err != nil {
return
}
err = marshalTwoDigits(out, sec)
if err != nil {
return
}
_, offset := t.Zone()
switch {
case offset/60 == 0:
err = out.WriteByte('Z')
return
case offset > 0:
err = out.WriteByte('+')
case offset < 0:
err = out.WriteByte('-')
}
if err != nil {
return
}
offsetMinutes := offset / 60
if offsetMinutes < 0 {
offsetMinutes = -offsetMinutes
}
err = marshalTwoDigits(out, offsetMinutes/60)
if err != nil {
return
}
err = marshalTwoDigits(out, offsetMinutes%60)
return
}
func stripTagAndLength(in []byte) []byte {
_, offset, err := parseTagAndLength(in, 0)
if err != nil {
return in
}
return in[offset:]
}
func marshalBody(out *forkableWriter, value reflect.Value, params fieldParameters) (err error) {
switch value.Type() {
case flagType:
return nil
case timeType:
t := value.Interface().(time.Time)
if params.timeType == tagGeneralizedTime || outsideUTCRange(t) {
return marshalGeneralizedTime(out, t)
} else {
return marshalUTCTime(out, t)
}
case bitStringType:
return marshalBitString(out, value.Interface().(BitString))
case objectIdentifierType:
return marshalObjectIdentifier(out, value.Interface().(ObjectIdentifier))
case bigIntType:
return marshalBigInt(out, value.Interface().(*big.Int))
}
switch v := value; v.Kind() {
case reflect.Bool:
if v.Bool() {
return out.WriteByte(255)
} else {
return out.WriteByte(0)
}
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return marshalInt64(out, int64(v.Int()))
case reflect.Struct:
t := v.Type()
startingField := 0
// If the first element of the structure is a non-empty
// RawContents, then we don't bother serializing the rest.
if t.NumField() > 0 && t.Field(0).Type == rawContentsType {
s := v.Field(0)
if s.Len() > 0 {
bytes := make([]byte, s.Len())
for i := 0; i < s.Len(); i++ {
bytes[i] = uint8(s.Index(i).Uint())
}
/* The RawContents will contain the tag and
* length fields but we'll also be writing
* those ourselves, so we strip them out of
* bytes */
_, err = out.Write(stripTagAndLength(bytes))
return
} else {
startingField = 1
}
}
for i := startingField; i < t.NumField(); i++ {
var pre *forkableWriter
pre, out = out.fork()
err = marshalField(pre, v.Field(i), parseFieldParameters(t.Field(i).Tag.Get("asn1")))
if err != nil {
return
}
}
return
case reflect.Slice:
sliceType := v.Type()
if sliceType.Elem().Kind() == reflect.Uint8 {
bytes := make([]byte, v.Len())
for i := 0; i < v.Len(); i++ {
bytes[i] = uint8(v.Index(i).Uint())
}
_, err = out.Write(bytes)
return
}
var fp fieldParameters
for i := 0; i < v.Len(); i++ {
var pre *forkableWriter
pre, out = out.fork()
err = marshalField(pre, v.Index(i), fp)
if err != nil {
return
}
}
return
case reflect.String:
switch params.stringType {
case tagIA5String:
return marshalIA5String(out, v.String())
case tagPrintableString:
return marshalPrintableString(out, v.String())
default:
return marshalUTF8String(out, v.String())
}
}
return StructuralError{"unknown Go type"}
}
func marshalField(out *forkableWriter, v reflect.Value, params fieldParameters) (err error) {
// If the field is an interface{} then recurse into it.
if v.Kind() == reflect.Interface && v.Type().NumMethod() == 0 {
return marshalField(out, v.Elem(), params)
}
if v.Kind() == reflect.Slice && v.Len() == 0 && params.omitEmpty {
return
}
if params.optional && params.defaultValue != nil && canHaveDefaultValue(v.Kind()) {
defaultValue := reflect.New(v.Type()).Elem()
defaultValue.SetInt(*params.defaultValue)
if reflect.DeepEqual(v.Interface(), defaultValue.Interface()) {
return
}
}
// If no default value is given then the zero value for the type is
// assumed to be the default value. This isn't obviously the correct
// behaviour, but it's what Go has traditionally done.
if params.optional && params.defaultValue == nil {
if reflect.DeepEqual(v.Interface(), reflect.Zero(v.Type()).Interface()) {
return
}
}
if v.Type() == rawValueType {
rv := v.Interface().(RawValue)
if len(rv.FullBytes) != 0 {
_, err = out.Write(rv.FullBytes)
} else {
err = marshalTagAndLength(out, tagAndLength{rv.Class, rv.Tag, len(rv.Bytes), rv.IsCompound})
if err != nil {
return
}
_, err = out.Write(rv.Bytes)
}
return
}
tag, isCompound, ok := getUniversalType(v.Type())
if !ok {
err = StructuralError{fmt.Sprintf("unknown Go type: %v", v.Type())}
return
}
class := classUniversal
if params.timeType != 0 && tag != tagUTCTime {
return StructuralError{"explicit time type given to non-time member"}
}
if params.stringType != 0 && tag != tagPrintableString {
return StructuralError{"explicit string type given to non-string member"}
}
switch tag {
case tagPrintableString:
if params.stringType == 0 {
// This is a string without an explicit string type. We'll use
// a PrintableString if the character set in the string is
// sufficiently limited, otherwise we'll use a UTF8String.
for _, r := range v.String() {
if r >= utf8.RuneSelf || !isPrintable(byte(r)) {
if !utf8.ValidString(v.String()) {
return errors.New("asn1: string not valid UTF-8")
}
tag = tagUTF8String
break
}
}
} else {
tag = params.stringType
}
case tagUTCTime:
if params.timeType == tagGeneralizedTime || outsideUTCRange(v.Interface().(time.Time)) {
tag = tagGeneralizedTime
}
}
if params.set {
if tag != tagSequence {
return StructuralError{"non sequence tagged as set"}
}
tag = tagSet
}
tags, body := out.fork()
err = marshalBody(body, v, params)
if err != nil {
return
}
bodyLen := body.Len()
var explicitTag *forkableWriter
if params.explicit {
explicitTag, tags = tags.fork()
}
if !params.explicit && params.tag != nil {
// implicit tag.
tag = *params.tag
class = classContextSpecific
}
err = marshalTagAndLength(tags, tagAndLength{class, tag, bodyLen, isCompound})
if err != nil {
return
}
if params.explicit {
err = marshalTagAndLength(explicitTag, tagAndLength{
class: classContextSpecific,
tag: *params.tag,
length: bodyLen + tags.Len(),
isCompound: true,
})
}
return nil
}
// Marshal returns the ASN.1 encoding of val.
//
// In addition to the struct tags recognised by Unmarshal, the following can be
// used:
//
// ia5: causes strings to be marshaled as ASN.1, IA5 strings
// omitempty: causes empty slices to be skipped
// printable: causes strings to be marshaled as ASN.1, PrintableString strings.
// utf8: causes strings to be marshaled as ASN.1, UTF8 strings
func Marshal(val interface{}) ([]byte, error) {
var out bytes.Buffer
v := reflect.ValueOf(val)
f := newForkableWriter()
err := marshalField(f, v, fieldParameters{})
if err != nil {
return nil, err
}
_, err = f.writeTo(&out)
return out.Bytes(), nil
}

View File

@ -23,6 +23,7 @@ import (
blog "github.com/letsencrypt/boulder/log"
"github.com/letsencrypt/boulder/nonce"
"github.com/letsencrypt/boulder/probs"
oldx509 "github.com/letsencrypt/go/src/crypto/x509"
jose "github.com/square/go-jose"
)
@ -810,7 +811,7 @@ func (wfe *WebFrontEndImpl) NewCertificate(ctx context.Context, logEvent *reques
}
certificateRequest := core.CertificateRequest{Bytes: rawCSR.CSR}
certificateRequest.CSR, err = x509.ParseCertificateRequest(rawCSR.CSR)
certificateRequest.CSR, err = oldx509.ParseCertificateRequest(rawCSR.CSR)
if err != nil {
logEvent.AddError("unable to parse certificate request: %s", err)
// TODO(jsha): Revert once #565 is closed by upgrading to Go 1.6, i.e. #1514