Merge branch 'master' into mail-from

This commit is contained in:
Jeff Hodges 2016-01-07 15:13:42 -08:00
commit 502aea76db
16 changed files with 366 additions and 127 deletions

View File

@ -65,6 +65,7 @@ type CertificateAuthorityImpl struct {
SA core.StorageAuthority
PA core.PolicyAuthority
Publisher core.Publisher
keyPolicy core.KeyPolicy
clk clock.Clock // TODO(jmhodges): should be private, like log
log *blog.AuditLogger
stats statsd.Statter
@ -90,6 +91,7 @@ func NewCertificateAuthorityImpl(
stats statsd.Statter,
issuer *x509.Certificate,
privateKey crypto.Signer,
keyPolicy core.KeyPolicy,
) (*CertificateAuthorityImpl, error) {
var ca *CertificateAuthorityImpl
var err error
@ -142,6 +144,7 @@ func NewCertificateAuthorityImpl(
stats: stats,
notAfter: issuer.NotAfter,
hsmFaultTimeout: config.HSMFaultTimeout.Duration,
keyPolicy: keyPolicy,
}
if config.Expiry == "" {
@ -218,12 +221,6 @@ func (ca *CertificateAuthorityImpl) GenerateOCSP(xferObj core.OCSPSigningRequest
return ocspResponse, err
}
// RevokeCertificate revokes the trust of the Cert referred to by the provided Serial.
func (ca *CertificateAuthorityImpl) RevokeCertificate(serial string, reasonCode core.RevocationCode) (err error) {
err = ca.SA.MarkCertificateRevoked(serial, reasonCode)
return err
}
// IssueCertificate attempts to convert a CSR into a signed Certificate, while
// enforcing all policies. Names (domains) in the CertificateRequest will be
// lowercased before storage.
@ -242,7 +239,7 @@ func (ca *CertificateAuthorityImpl) IssueCertificate(csr x509.CertificateRequest
ca.log.AuditErr(err)
return emptyCert, err
}
if err = core.GoodKey(key); err != nil {
if err = ca.keyPolicy.GoodKey(key); err != nil {
err = core.MalformedRequestError(fmt.Sprintf("Invalid public key in CSR: %s", err.Error()))
// AUDIT[ Certificate Requests ] 11917fa4-10ef-4e0d-9105-bacbe7836a3c
ca.log.AuditErr(err)

View File

@ -109,13 +109,14 @@ func mustRead(path string) []byte {
}
type testCtx struct {
sa core.StorageAuthority
caConfig cmd.CAConfig
reg core.Registration
pa core.PolicyAuthority
fc clock.FakeClock
stats *mocks.Statter
cleanUp func()
sa core.StorageAuthority
caConfig cmd.CAConfig
reg core.Registration
pa core.PolicyAuthority
keyPolicy core.KeyPolicy
fc clock.FakeClock
stats *mocks.Statter
cleanUp func()
}
var caKey crypto.Signer
@ -207,11 +208,18 @@ func setup(t *testing.T) *testCtx {
stats := mocks.NewStatter()
keyPolicy := core.KeyPolicy{
AllowRSA: true,
AllowECDSANISTP256: true,
AllowECDSANISTP384: true,
}
return &testCtx{
ssa,
caConfig,
reg,
pa,
keyPolicy,
fc,
&stats,
cleanUp,
@ -223,14 +231,14 @@ func TestFailNoSerial(t *testing.T) {
defer ctx.cleanUp()
ctx.caConfig.SerialPrefix = 0
_, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey)
_, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey, ctx.keyPolicy)
test.AssertError(t, err, "CA should have failed with no SerialPrefix")
}
func TestIssueCertificate(t *testing.T) {
ctx := setup(t)
defer ctx.cleanUp()
ca, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey)
ca, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey, ctx.keyPolicy)
test.AssertNotError(t, err, "Failed to create CA")
ca.Publisher = &mocks.Publisher{}
ca.PA = ctx.pa
@ -307,7 +315,7 @@ func TestIssueCertificate(t *testing.T) {
func TestRejectNoName(t *testing.T) {
ctx := setup(t)
defer ctx.cleanUp()
ca, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey)
ca, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey, ctx.keyPolicy)
test.AssertNotError(t, err, "Failed to create CA")
ca.Publisher = &mocks.Publisher{}
ca.PA = ctx.pa
@ -324,7 +332,7 @@ func TestRejectNoName(t *testing.T) {
func TestRejectTooManyNames(t *testing.T) {
ctx := setup(t)
defer ctx.cleanUp()
ca, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey)
ca, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey, ctx.keyPolicy)
test.AssertNotError(t, err, "Failed to create CA")
ca.Publisher = &mocks.Publisher{}
ca.PA = ctx.pa
@ -341,7 +349,7 @@ func TestRejectTooManyNames(t *testing.T) {
func TestDeduplication(t *testing.T) {
ctx := setup(t)
defer ctx.cleanUp()
ca, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey)
ca, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey, ctx.keyPolicy)
test.AssertNotError(t, err, "Failed to create CA")
ca.Publisher = &mocks.Publisher{}
ca.PA = ctx.pa
@ -365,7 +373,7 @@ func TestDeduplication(t *testing.T) {
func TestRejectValidityTooLong(t *testing.T) {
ctx := setup(t)
defer ctx.cleanUp()
ca, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey)
ca, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey, ctx.keyPolicy)
test.AssertNotError(t, err, "Failed to create CA")
ca.Publisher = &mocks.Publisher{}
ca.PA = ctx.pa
@ -383,7 +391,7 @@ func TestRejectValidityTooLong(t *testing.T) {
func TestShortKey(t *testing.T) {
ctx := setup(t)
defer ctx.cleanUp()
ca, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey)
ca, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey, ctx.keyPolicy)
ca.Publisher = &mocks.Publisher{}
ca.PA = ctx.pa
ca.SA = ctx.sa
@ -399,7 +407,7 @@ func TestShortKey(t *testing.T) {
func TestRejectBadAlgorithm(t *testing.T) {
ctx := setup(t)
defer ctx.cleanUp()
ca, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey)
ca, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey, ctx.keyPolicy)
ca.Publisher = &mocks.Publisher{}
ca.PA = ctx.pa
ca.SA = ctx.sa
@ -416,7 +424,7 @@ func TestCapitalizedLetters(t *testing.T) {
ctx := setup(t)
defer ctx.cleanUp()
ctx.caConfig.MaxNames = 3
ca, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey)
ca, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey, ctx.keyPolicy)
ca.Publisher = &mocks.Publisher{}
ca.PA = ctx.pa
ca.SA = ctx.sa
@ -437,7 +445,7 @@ func TestHSMFaultTimeout(t *testing.T) {
ctx := setup(t)
defer ctx.cleanUp()
ca, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey)
ca, err := NewCertificateAuthorityImpl(ctx.caConfig, ctx.fc, ctx.stats, caCert, caKey, ctx.keyPolicy)
ca.Publisher = &mocks.Publisher{}
ca.PA = ctx.pa
ca.SA = ctx.sa

View File

@ -91,7 +91,8 @@ func main() {
clock.Default(),
stats,
issuer,
priv)
priv,
c.KeyPolicy())
cmd.FailOnError(err, "Failed to create CA impl")
cai.PA = pa

View File

@ -59,7 +59,7 @@ func main() {
}
rai := ra.NewRegistrationAuthorityImpl(clock.Default(), auditlogger, stats,
dc, rateLimitPolicies, c.RA.MaxContactsPerRegistration)
dc, rateLimitPolicies, c.RA.MaxContactsPerRegistration, c.KeyPolicy())
rai.PA = pa
raDNSTimeout, err := time.ParseDuration(c.Common.DNSTimeout)
cmd.FailOnError(err, "Couldn't parse RA DNS timeout")

View File

@ -53,7 +53,7 @@ func main() {
app.Action = func(c cmd.Config, stats statsd.Statter, auditlogger *blog.AuditLogger) {
go cmd.DebugServer(c.WFE.DebugAddr)
wfe, err := wfe.NewWebFrontEndImpl(stats, clock.Default())
wfe, err := wfe.NewWebFrontEndImpl(stats, clock.Default(), c.KeyPolicy())
cmd.FailOnError(err, "Unable to create WFE")
rac, sac := setupWFE(c, auditlogger, stats)
wfe.RA = rac
@ -79,6 +79,8 @@ func main() {
wfe.IssuerCert, err = cmd.LoadCert(c.Common.IssuerCert)
cmd.FailOnError(err, fmt.Sprintf("Couldn't read issuer cert [%s]", c.Common.IssuerCert))
auditlogger.Info(fmt.Sprintf("WFE using key policy: %#v", c.KeyPolicy()))
go cmd.ProfileCmd("WFE", stats)
// Set up paths

View File

@ -188,9 +188,26 @@ type Config struct {
ReportDirectoryPath string
}
AllowedSigningAlgos struct {
RSA bool
ECDSANISTP256 bool
ECDSANISTP384 bool
ECDSANISTP521 bool
}
SubscriberAgreementURL string
}
// KeyPolicy returns a KeyPolicy reflecting the Boulder configuration.
func (config *Config) KeyPolicy() core.KeyPolicy {
return core.KeyPolicy{
AllowRSA: config.AllowedSigningAlgos.RSA,
AllowECDSANISTP256: config.AllowedSigningAlgos.ECDSANISTP256,
AllowECDSANISTP384: config.AllowedSigningAlgos.ECDSANISTP384,
AllowECDSANISTP521: config.AllowedSigningAlgos.ECDSANISTP521,
}
}
// ServiceConfig contains config items that are common to all our services, to
// be embedded in other config structs.
type ServiceConfig struct {

View File

@ -29,10 +29,6 @@ func (ca *mockCA) GenerateOCSP(xferObj core.OCSPSigningRequest) (ocsp []byte, er
return
}
func (ca *mockCA) RevokeCertificate(serial string, reasonCode core.RevocationCode) (err error) {
return
}
type mockPub struct {
sa core.StorageAuthority
}

View File

@ -8,9 +8,9 @@ package core
import (
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"fmt"
blog "github.com/letsencrypt/boulder/log"
"math/big"
"reflect"
"sync"
@ -38,53 +38,163 @@ var (
smallPrimes []*big.Int
)
// KeyPolicy etermines which types of key may be used with various boulder
// operations.
type KeyPolicy struct {
AllowRSA bool // Whether RSA keys should be allowed.
AllowECDSANISTP256 bool // Whether ECDSA NISTP256 keys should be allowed.
AllowECDSANISTP384 bool // Whether ECDSA NISTP384 keys should be allowed.
AllowECDSANISTP521 bool // Whether ECDSA NISTP521 keys should be allowed.
}
// GoodKey returns true iff the key is acceptable for both TLS use and account
// key use (our requirements are the same for either one), according to basic
// strength and algorithm checking.
// TODO: Support JsonWebKeys once go-jose migration is done.
func GoodKey(key crypto.PublicKey) error {
log := blog.GetAuditLogger()
func (policy *KeyPolicy) GoodKey(key crypto.PublicKey) error {
switch t := key.(type) {
case rsa.PublicKey:
return GoodKeyRSA(t)
return policy.goodKeyRSA(t)
case *rsa.PublicKey:
return GoodKeyRSA(*t)
return policy.goodKeyRSA(*t)
case ecdsa.PublicKey:
return GoodKeyECDSA(t)
return policy.goodKeyECDSA(t)
case *ecdsa.PublicKey:
return GoodKeyECDSA(*t)
return policy.goodKeyECDSA(*t)
default:
err := MalformedRequestError(fmt.Sprintf("Unknown key type %s", reflect.TypeOf(key)))
log.Debug(err.Error())
return err
return MalformedRequestError(fmt.Sprintf("Unknown key type %s", reflect.TypeOf(key)))
}
}
// GoodKeyECDSA determines if an ECDSA pubkey meets our requirements
func GoodKeyECDSA(key ecdsa.PublicKey) (err error) {
log := blog.GetAuditLogger()
err = NotSupportedError("ECDSA keys not yet supported")
log.Debug(err.Error())
return
func (policy *KeyPolicy) goodKeyECDSA(key ecdsa.PublicKey) (err error) {
// Check the curve.
//
// The validity of the curve is an assumption for all following tests.
err = policy.goodCurve(key.Curve)
if err != nil {
return err
}
// Key validation routine adapted from NIST SP800-56A § 5.6.2.3.2.
// <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf>
//
// Assuming a prime field since a) we are only allowing such curves and b)
// crypto/elliptic only supports prime curves. Where this assumption
// simplifies the code below, it is explicitly stated and explained. If ever
// adapting this code to support non-prime curves, refer to NIST SP800-56A §
// 5.6.2.3.2 and adapt this code appropriately.
params := key.Params()
// SP800-56A § 5.6.2.3.2 Step 1.
// Partial check of the public key for an invalid range in the EC group:
// Verify that key is not the point at infinity O.
// This code assumes that the point at infinity is (0,0), which is the
// case for all supported curves.
if isPointAtInfinityNISTP(key.X, key.Y) {
return MalformedRequestError("Key x, y must not be the point at infinity")
}
// SP800-56A § 5.6.2.3.2 Step 2.
// "Verify that x_Q and y_Q are integers in the interval [0,p-1] in the
// case that q is an odd prime p, or that x_Q and y_Q are bit strings
// of length m bits in the case that q = 2**m."
//
// Prove prime field: ASSUMED.
// Prove q != 2: ASSUMED. (Curve parameter. No supported curve has q == 2.)
// Prime field && q != 2 => q is an odd prime p
// Therefore "verify that x, y are in [0, p-1]" satisfies step 2.
//
// Therefore verify that both x and y of the public key point have the unique
// correct representation of an element in the underlying field by verifying
// that x and y are integers in [0, p-1].
if key.X.Sign() < 0 || key.Y.Sign() < 0 {
return MalformedRequestError("Key x, y must not be negative")
}
if key.X.Cmp(params.P) >= 0 || key.Y.Cmp(params.P) >= 0 {
return MalformedRequestError("Key x, y must not exceed P-1")
}
// SP800-56A § 5.6.2.3.2 Step 3.
// "If q is an odd prime p, verify that (y_Q)**2 === (x_Q)***3 + a*x_Q + b (mod p).
// If q = 2**m, verify that (y_Q)**2 + (x_Q)*(y_Q) == (x_Q)**3 + a*(x_Q)*2 + b in
// the finite field of size 2**m.
// (Ensures that the public key is on the correct elliptic curve.)"
//
// q is an odd prime p: proven/assumed above.
// a = -3 for all supported curves.
//
// Therefore step 3 is satisfied simply by showing that
// y**2 === x**3 - 3*x + B (mod P).
//
// This proves that the public key is on the correct elliptic curve.
// But in practice, this test is provided by crypto/elliptic, so use that.
if !key.Curve.IsOnCurve(key.X, key.Y) {
return MalformedRequestError("Key point is not on the curve")
}
// SP800-56A § 5.6.2.3.2 Step 4.
// "Verify that n*Q == O.
// (Ensures that the public key has the correct order. Along with check 1,
// ensures that the public key is in the correct range in the correct EC
// subgroup, that is, it is in the correct EC subgroup and is not the
// identity element.)"
//
// Ensure that public key has the correct order:
// verify that n*Q = O.
//
// n*Q = O iff n*Q is the point at infinity (see step 1).
ox, oy := key.Curve.ScalarMult(key.X, key.Y, params.N.Bytes())
if !isPointAtInfinityNISTP(ox, oy) {
return MalformedRequestError("Public key does not have correct order")
}
// End of SP800-56A § 5.6.2.3.2 Public Key Validation Routine.
// Key is valid.
return nil
}
// Returns true iff the point (x,y) on NIST P-256, NIST P-384 or NIST P-521 is
// the point at infinity. These curves all have the same point at infinity
// (0,0). This function must ONLY be used on points on curves verified to have
// (0,0) as their point at infinity.
func isPointAtInfinityNISTP(x, y *big.Int) bool {
return x.Sign() == 0 && y.Sign() == 0
}
// GoodCurve determines if an elliptic curve meets our requirements.
func (policy *KeyPolicy) goodCurve(c elliptic.Curve) (err error) {
// Simply use a whitelist for now.
params := c.Params()
switch {
case policy.AllowECDSANISTP256 && params == elliptic.P256().Params():
return nil
case policy.AllowECDSANISTP384 && params == elliptic.P384().Params():
return nil
case policy.AllowECDSANISTP521 && params == elliptic.P521().Params():
return nil
default:
return MalformedRequestError(fmt.Sprintf("ECDSA curve %v not allowed", params.Name))
}
}
// GoodKeyRSA determines if a RSA pubkey meets our requirements
func GoodKeyRSA(key rsa.PublicKey) (err error) {
log := blog.GetAuditLogger()
func (policy *KeyPolicy) goodKeyRSA(key rsa.PublicKey) (err error) {
if !policy.AllowRSA {
return MalformedRequestError("RSA keys are not allowed")
}
// Baseline Requirements Appendix A
// Modulus must be >= 2048 bits and <= 4096 bits
modulus := key.N
modulusBitLen := modulus.BitLen()
const maxKeySize = 4096
if modulusBitLen < 2048 {
err = MalformedRequestError(fmt.Sprintf("Key too small: %d", modulusBitLen))
log.Debug(err.Error())
return err
return MalformedRequestError(fmt.Sprintf("Key too small: %d", modulusBitLen))
}
if modulusBitLen > maxKeySize {
err = MalformedRequestError(fmt.Sprintf("Key too large: %d > %d", modulusBitLen, maxKeySize))
log.Debug(err.Error())
return err
return MalformedRequestError(fmt.Sprintf("Key too large: %d > %d", modulusBitLen, maxKeySize))
}
// The CA SHALL confirm that the value of the public exponent is an
// odd number equal to 3 or more. Additionally, the public exponent
@ -93,26 +203,36 @@ func GoodKeyRSA(key rsa.PublicKey) (err error) {
// 2^32 - 1 or 2^64 - 1, because it stores E as an integer. So we
// don't need to check the upper bound.
if (key.E%2) == 0 || key.E < ((1<<16)+1) {
err = MalformedRequestError(fmt.Sprintf("Key exponent should be odd and >2^16: %d", key.E))
log.Debug(err.Error())
return err
return MalformedRequestError(fmt.Sprintf("Key exponent should be odd and >2^16: %d", key.E))
}
// The modulus SHOULD also have the following characteristics: an odd
// number, not the power of a prime, and have no factors smaller than 752.
// TODO: We don't yet check for "power of a prime."
if checkSmallPrimes(modulus) {
return MalformedRequestError("Key divisible by small prime")
}
return nil
}
// Returns true iff integer i is divisible by any of the primes in smallPrimes.
//
// Short circuits; execution time is dependent on i. Do not use this on secret
// values.
func checkSmallPrimes(i *big.Int) bool {
smallPrimesSingleton.Do(func() {
for _, prime := range smallPrimeInts {
smallPrimes = append(smallPrimes, big.NewInt(prime))
}
})
for _, prime := range smallPrimes {
var result big.Int
result.Mod(modulus, prime)
result.Mod(i, prime)
if result.Sign() == 0 {
err = MalformedRequestError(fmt.Sprintf("Key divisible by small prime: %d", prime))
log.Debug(err.Error())
return err
return true
}
}
return nil
return false
}

View File

@ -7,6 +7,7 @@ package core
import (
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"math/big"
@ -15,29 +16,29 @@ import (
"github.com/letsencrypt/boulder/test"
)
func TestUnknownKeyType(t *testing.T) {
notAKey := struct{}{}
test.AssertError(t, GoodKey(notAKey), "Should have rejected a key of unknown type")
var testingPolicy = &KeyPolicy{
AllowRSA: true,
AllowECDSANISTP256: true,
AllowECDSANISTP384: true,
}
func TestWrongKeyType(t *testing.T) {
ecdsaKey := ecdsa.PublicKey{}
test.AssertError(t, GoodKey(&ecdsaKey), "Should have rejected ECDSA key.")
test.AssertError(t, GoodKey(ecdsaKey), "Should have rejected ECDSA key.")
func TestUnknownKeyType(t *testing.T) {
notAKey := struct{}{}
test.AssertError(t, testingPolicy.GoodKey(notAKey), "Should have rejected a key of unknown type")
}
func TestSmallModulus(t *testing.T) {
private, err := rsa.GenerateKey(rand.Reader, 2040)
test.AssertNotError(t, err, "Error generating key")
test.AssertError(t, GoodKey(&private.PublicKey), "Should have rejected too-short key.")
test.AssertError(t, GoodKey(private.PublicKey), "Should have rejected too-short key.")
test.AssertError(t, testingPolicy.GoodKey(&private.PublicKey), "Should have rejected too-short key.")
test.AssertError(t, testingPolicy.GoodKey(private.PublicKey), "Should have rejected too-short key.")
}
func TestLargeModulus(t *testing.T) {
private, err := rsa.GenerateKey(rand.Reader, 4097)
test.AssertNotError(t, err, "Error generating key")
test.AssertError(t, GoodKey(&private.PublicKey), "Should have rejected too-long key.")
test.AssertError(t, GoodKey(private.PublicKey), "Should have rejected too-long key.")
test.AssertError(t, testingPolicy.GoodKey(&private.PublicKey), "Should have rejected too-long key.")
test.AssertError(t, testingPolicy.GoodKey(private.PublicKey), "Should have rejected too-long key.")
}
func TestSmallExponent(t *testing.T) {
@ -46,7 +47,7 @@ func TestSmallExponent(t *testing.T) {
N: bigOne.Lsh(bigOne, 2048),
E: 5,
}
test.AssertError(t, GoodKey(&key), "Should have rejected small exponent.")
test.AssertError(t, testingPolicy.GoodKey(&key), "Should have rejected small exponent.")
}
func TestEvenExponent(t *testing.T) {
@ -55,7 +56,7 @@ func TestEvenExponent(t *testing.T) {
N: bigOne.Lsh(bigOne, 2048),
E: 1 << 17,
}
test.AssertError(t, GoodKey(&key), "Should have rejected even exponent.")
test.AssertError(t, testingPolicy.GoodKey(&key), "Should have rejected even exponent.")
}
func TestEvenModulus(t *testing.T) {
@ -64,7 +65,7 @@ func TestEvenModulus(t *testing.T) {
N: bigOne.Lsh(bigOne, 2048),
E: (1 << 17) + 1,
}
test.AssertError(t, GoodKey(&key), "Should have rejected even modulus.")
test.AssertError(t, testingPolicy.GoodKey(&key), "Should have rejected even modulus.")
}
func TestModulusDivisibleBy752(t *testing.T) {
@ -76,11 +77,120 @@ func TestModulusDivisibleBy752(t *testing.T) {
N: N,
E: (1 << 17) + 1,
}
test.AssertError(t, GoodKey(&key), "Should have rejected modulus divisible by 751.")
test.AssertError(t, testingPolicy.GoodKey(&key), "Should have rejected modulus divisible by 751.")
}
func TestGoodKey(t *testing.T) {
private, err := rsa.GenerateKey(rand.Reader, 2048)
test.AssertNotError(t, err, "Error generating key")
test.AssertNotError(t, GoodKey(&private.PublicKey), "Should have accepted good key.")
test.AssertNotError(t, testingPolicy.GoodKey(&private.PublicKey), "Should have accepted good key.")
}
func TestECDSABadCurve(t *testing.T) {
for _, curve := range invalidCurves {
private, err := ecdsa.GenerateKey(curve, rand.Reader)
test.AssertNotError(t, err, "Error generating key")
test.AssertError(t, testingPolicy.GoodKey(&private.PublicKey), "Should have rejected key with unsupported curve.")
test.AssertError(t, testingPolicy.GoodKey(private.PublicKey), "Should have rejected key with unsupported curve.")
}
}
var invalidCurves = []elliptic.Curve{
elliptic.P224(),
elliptic.P521(),
}
var validCurves = []elliptic.Curve{
elliptic.P256(),
elliptic.P384(),
}
func TestECDSAGoodKey(t *testing.T) {
for _, curve := range validCurves {
private, err := ecdsa.GenerateKey(curve, rand.Reader)
test.AssertNotError(t, err, "Error generating key")
test.AssertNotError(t, testingPolicy.GoodKey(&private.PublicKey), "Should have accepted good key.")
test.AssertNotError(t, testingPolicy.GoodKey(private.PublicKey), "Should have accepted good key.")
}
}
func TestECDSANotOnCurveX(t *testing.T) {
for _, curve := range validCurves {
// Change a public key so that it is no longer on the curve.
private, err := ecdsa.GenerateKey(curve, rand.Reader)
test.AssertNotError(t, err, "Error generating key")
private.X.Add(private.X, big.NewInt(1))
test.AssertError(t, testingPolicy.GoodKey(&private.PublicKey), "Should not have accepted key not on the curve.")
test.AssertError(t, testingPolicy.GoodKey(private.PublicKey), "Should not have accepted key not on the curve.")
}
}
func TestECDSANotOnCurveY(t *testing.T) {
for _, curve := range validCurves {
// Again with Y.
private, err := ecdsa.GenerateKey(curve, rand.Reader)
test.AssertNotError(t, err, "Error generating key")
// Change the public key so that it is no longer on the curve.
private.Y.Add(private.Y, big.NewInt(1))
test.AssertError(t, testingPolicy.GoodKey(&private.PublicKey), "Should not have accepted key not on the curve.")
test.AssertError(t, testingPolicy.GoodKey(private.PublicKey), "Should not have accepted key not on the curve.")
}
}
func TestECDSANegative(t *testing.T) {
for _, curve := range validCurves {
// Check that negative X is not accepted.
private, err := ecdsa.GenerateKey(curve, rand.Reader)
test.AssertNotError(t, err, "Error generating key")
private.X.Neg(private.X)
test.AssertError(t, testingPolicy.GoodKey(&private.PublicKey), "Should not have accepted key with negative X.")
test.AssertError(t, testingPolicy.GoodKey(private.PublicKey), "Should not have accepted key with negative X.")
// Check that negative Y is not accepted.
private.X.Neg(private.X)
private.Y.Neg(private.Y)
test.AssertError(t, testingPolicy.GoodKey(&private.PublicKey), "Should not have accepted key with negative Y.")
test.AssertError(t, testingPolicy.GoodKey(private.PublicKey), "Should not have accepted key with negative Y.")
}
}
func TestECDSANegativeUnmodulatedX(t *testing.T) {
for _, curve := range validCurves {
// Check that unmodulated X is not accepted.
private, err := ecdsa.GenerateKey(curve, rand.Reader)
test.AssertNotError(t, err, "Error generating key")
private.X.Mul(private.X, private.Curve.Params().P)
test.AssertError(t, testingPolicy.GoodKey(&private.PublicKey), "Should not have accepted key with unmodulated X.")
test.AssertError(t, testingPolicy.GoodKey(private.PublicKey), "Should not have accepted key with unmodulated X.")
}
}
func TestECDSANegativeUnmodulatedY(t *testing.T) {
for _, curve := range validCurves {
// Check that unmodulated Y is not accepted.
private, err := ecdsa.GenerateKey(curve, rand.Reader)
test.AssertNotError(t, err, "Error generating key")
private.X.Mul(private.Y, private.Curve.Params().P)
test.AssertError(t, testingPolicy.GoodKey(&private.PublicKey), "Should not have accepted key with unmodulated Y.")
test.AssertError(t, testingPolicy.GoodKey(private.PublicKey), "Should not have accepted key with unmodulated Y.")
}
}
func TestECDSAIdentity(t *testing.T) {
for _, curve := range validCurves {
// The point at infinity is 0,0, it should not be accepted.
public := ecdsa.PublicKey{
Curve: curve,
X: big.NewInt(0),
Y: big.NewInt(0),
}
test.AssertError(t, testingPolicy.GoodKey(&public), "Should not have accepted key with point at infinity.")
test.AssertError(t, testingPolicy.GoodKey(public), "Should not have accepted key with point at infinity.")
}
}

View File

@ -12,7 +12,6 @@ import (
"time"
jose "github.com/letsencrypt/boulder/Godeps/_workspace/src/github.com/letsencrypt/go-jose"
gorp "github.com/letsencrypt/boulder/Godeps/_workspace/src/gopkg.in/gorp.v1"
)
// A WebFrontEnd object supplies methods that can be hooked into
@ -83,7 +82,6 @@ type RegistrationAuthority interface {
type CertificateAuthority interface {
// [RegistrationAuthority]
IssueCertificate(x509.CertificateRequest, int64) (Certificate, error)
RevokeCertificate(string, RevocationCode) error
GenerateOCSP(OCSPSigningRequest) ([]byte, error)
}
@ -133,12 +131,6 @@ type StorageAuthority interface {
StorageAdder
}
// CertificateAuthorityDatabase represents an atomic sequence source
type CertificateAuthorityDatabase interface {
IncrementAndGetSerial(*gorp.Transaction) (int64, error)
Begin() (*gorp.Transaction, error)
}
// Publisher defines the public interface for the Boulder Publisher
type Publisher interface {
SubmitToCT([]byte) error

View File

@ -55,6 +55,7 @@ type RegistrationAuthorityImpl struct {
clk clock.Clock
log *blog.AuditLogger
dc *DomainCheck
keyPolicy core.KeyPolicy
// How long before a newly created authorization expires.
authorizationLifetime time.Duration
pendingAuthorizationLifetime time.Duration
@ -71,7 +72,7 @@ type RegistrationAuthorityImpl struct {
}
// NewRegistrationAuthorityImpl constructs a new RA object.
func NewRegistrationAuthorityImpl(clk clock.Clock, logger *blog.AuditLogger, stats statsd.Statter, dc *DomainCheck, policies cmd.RateLimitConfig, maxContactsPerReg int) *RegistrationAuthorityImpl {
func NewRegistrationAuthorityImpl(clk clock.Clock, logger *blog.AuditLogger, stats statsd.Statter, dc *DomainCheck, policies cmd.RateLimitConfig, maxContactsPerReg int, keyPolicy core.KeyPolicy) *RegistrationAuthorityImpl {
// TODO(jmhodges): making RA take a "RA" stats.Scope, not Statter
scope := metrics.NewStatsdScope(stats, "RA")
ra := &RegistrationAuthorityImpl{
@ -84,6 +85,7 @@ func NewRegistrationAuthorityImpl(clk clock.Clock, logger *blog.AuditLogger, sta
rlPolicies: policies,
tiMu: new(sync.RWMutex),
maxContactsPerReg: maxContactsPerReg,
keyPolicy: keyPolicy,
regByIPStats: scope.NewScope("RA", "RateLimit", "RegistrationsByIP"),
pendAuthByRegIDStats: scope.NewScope("RA", "RateLimit", "PendingAuthorizationsByRegID"),
@ -210,7 +212,7 @@ func (ra *RegistrationAuthorityImpl) checkRegistrationLimit(ip net.IP) error {
// NewRegistration constructs a new Registration from a request.
func (ra *RegistrationAuthorityImpl) NewRegistration(init core.Registration) (reg core.Registration, err error) {
if err = core.GoodKey(init.Key.Key); err != nil {
if err = ra.keyPolicy.GoodKey(init.Key.Key); err != nil {
return core.Registration{}, core.MalformedRequestError(fmt.Sprintf("Invalid public key: %s", err.Error()))
}
if err = ra.checkRegistrationLimit(init.InitialIP); err != nil {

View File

@ -146,6 +146,12 @@ func makeResponse(ch core.Challenge) (out core.Challenge, err error) {
return
}
var testKeyPolicy = core.KeyPolicy{
AllowRSA: true,
AllowECDSANISTP256: true,
AllowECDSANISTP384: true,
}
func initAuthorities(t *testing.T) (*DummyValidationAuthority, *sa.SQLStorageAuthority, *RegistrationAuthorityImpl, clock.FakeClock, func()) {
err := json.Unmarshal(AccountKeyJSONA, &AccountKeyA)
test.AssertNotError(t, err, "Failed to unmarshal public JWK")
@ -215,7 +221,8 @@ func initAuthorities(t *testing.T) (*DummyValidationAuthority, *sa.SQLStorageAut
fc,
stats,
caCert,
caKey)
caKey,
testKeyPolicy)
test.AssertNotError(t, err, "Couldn't create CA")
ca.SA = ssa
ca.PA = pa
@ -242,7 +249,7 @@ func initAuthorities(t *testing.T) (*DummyValidationAuthority, *sa.SQLStorageAut
Threshold: 100,
Window: cmd.ConfigDuration{Duration: 24 * 90 * time.Hour},
},
}, 1)
}, 1, testKeyPolicy)
ra.SA = ssa
ra.VA = va
ra.CA = ca

View File

@ -42,7 +42,6 @@ const (
MethodNewCertificate = "NewCertificate" // RA
MethodUpdateRegistration = "UpdateRegistration" // RA, SA
MethodUpdateAuthorization = "UpdateAuthorization" // RA
MethodRevokeCertificate = "RevokeCertificate" // CA
MethodRevokeCertificateWithReg = "RevokeCertificateWithReg" // RA
MethodAdministrativelyRevokeCertificate = "AdministrativelyRevokeCertificate" // RA
MethodOnValidationUpdate = "OnValidationUpdate" // RA
@ -704,19 +703,6 @@ func NewCertificateAuthorityServer(rpc Server, impl core.CertificateAuthority) (
return
})
rpc.Handle(MethodRevokeCertificate, func(req []byte) (response []byte, err error) {
var revokeReq revokeCertificateRequest
err = json.Unmarshal(req, &revokeReq)
if err != nil {
// AUDIT[ Error Conditions ] 9cc4d537-8534-4970-8665-4b382abe82f3
errorCondition(MethodRevokeCertificate, err, req)
return
}
err = impl.RevokeCertificate(revokeReq.Serial, revokeReq.ReasonCode)
return
})
rpc.Handle(MethodGenerateOCSP, func(req []byte) (response []byte, err error) {
var xferObj core.OCSPSigningRequest
err = json.Unmarshal(req, &xferObj)
@ -767,23 +753,6 @@ func (cac CertificateAuthorityClient) IssueCertificate(csr x509.CertificateReque
return
}
// RevokeCertificate sends a request to revoke a certificate
func (cac CertificateAuthorityClient) RevokeCertificate(serial string, reasonCode core.RevocationCode) (err error) {
var revokeReq revokeCertificateRequest
revokeReq.Serial = serial
revokeReq.ReasonCode = reasonCode
data, err := json.Marshal(revokeReq)
if err != nil {
// AUDIT[ Error Conditions ] 9cc4d537-8534-4970-8665-4b382abe82f3
errorCondition(MethodRevokeCertificate, err, revokeReq)
return
}
_, err = cac.rpc.DispatchSync(MethodRevokeCertificate, data)
return
}
// GenerateOCSP sends a request to generate an OCSP response
func (cac CertificateAuthorityClient) GenerateOCSP(signRequest core.OCSPSigningRequest) (resp []byte, err error) {
data, err := json.Marshal(signRequest)

View File

@ -306,5 +306,12 @@
"dbConnectFile": "test/secrets/cert_checker_dburl"
},
"subscriberAgreementURL": "http://127.0.0.1:4001/terms/v1"
"subscriberAgreementURL": "http://127.0.0.1:4001/terms/v1",
"allowedSigningAlgos": {
"rsa": true,
"ecdsanistp256": true,
"ecdsanistp384": true,
"ecdsanistp521": false
}
}

View File

@ -75,6 +75,9 @@ type WebFrontEndImpl struct {
// Register of anti-replay nonces
nonceService *core.NonceService
// Key policy.
keyPolicy core.KeyPolicy
// Cache settings
CertCacheDuration time.Duration
CertNoCacheExpirationWindow time.Duration
@ -90,7 +93,7 @@ type WebFrontEndImpl struct {
}
// NewWebFrontEndImpl constructs a web service for Boulder
func NewWebFrontEndImpl(stats statsd.Statter, clk clock.Clock) (WebFrontEndImpl, error) {
func NewWebFrontEndImpl(stats statsd.Statter, clk clock.Clock, keyPolicy core.KeyPolicy) (WebFrontEndImpl, error) {
logger := blog.GetAuditLogger()
logger.Notice("Web Front End Starting")
@ -104,6 +107,7 @@ func NewWebFrontEndImpl(stats statsd.Statter, clk clock.Clock) (WebFrontEndImpl,
clk: clk,
nonceService: nonceService,
stats: stats,
keyPolicy: keyPolicy,
}, nil
}
@ -355,7 +359,7 @@ func (wfe *WebFrontEndImpl) verifyPOST(logEvent *requestEvent, request *http.Req
// When looking up keys from the registrations DB, we can be confident they
// are "good". But when we are verifying against any submitted key, we want
// to check its quality before doing the verify.
if err = core.GoodKey(submittedKey.Key); err != nil {
if err = wfe.keyPolicy.GoodKey(submittedKey.Key); err != nil {
wfe.stats.Inc("WFE.Errors.JWKRejectedByGoodKey", 1, 1.0)
logEvent.AddError("JWK in request was rejected by GoodKey: %s", err)
return nil, nil, reg, probs.Malformed(err.Error())
@ -719,7 +723,7 @@ func (wfe *WebFrontEndImpl) NewCertificate(logEvent *requestEvent, response http
// bytes on the wire, and (b) the CA logs all rejections as audit events, but
// a bad key from the client is just a malformed request and doesn't need to
// be audited.
if err := core.GoodKey(certificateRequest.CSR.PublicKey); err != nil {
if err := wfe.keyPolicy.GoodKey(certificateRequest.CSR.PublicKey); err != nil {
logEvent.AddError("CSR public key failed GoodKey: %s", err)
wfe.sendError(response, logEvent, probs.Malformed("Invalid key in certificate request :: %s", err), err)
return

View File

@ -197,10 +197,17 @@ func signRequest(t *testing.T, req string, nonceService *core.NonceService) stri
return ret
}
var testKeyPolicy = core.KeyPolicy{
AllowRSA: true,
AllowECDSANISTP256: true,
AllowECDSANISTP384: true,
}
func setupWFE(t *testing.T) (WebFrontEndImpl, clock.FakeClock) {
fc := clock.NewFake()
stats, _ := statsd.NewNoopClient()
wfe, err := NewWebFrontEndImpl(stats, fc)
wfe, err := NewWebFrontEndImpl(stats, fc, testKeyPolicy)
test.AssertNotError(t, err, "Unable to create WFE")
wfe.NewReg = wfe.BaseURL + NewRegPath
@ -546,7 +553,7 @@ func TestIssueCertificate(t *testing.T) {
// TODO: Use a mock RA so we can test various conditions of authorized, not
// authorized, etc.
stats, _ := statsd.NewNoopClient(nil)
ra := ra.NewRegistrationAuthorityImpl(fc, wfe.log, stats, nil, cmd.RateLimitConfig{}, 0)
ra := ra.NewRegistrationAuthorityImpl(fc, wfe.log, stats, nil, cmd.RateLimitConfig{}, 0, testKeyPolicy)
ra.SA = mocks.NewStorageAuthority(fc)
ra.CA = &MockCA{}
ra.PA = &MockPA{}