Things removed:
* features.EmbedSCTs (and all the associated RA/CA/ocsp-updater code etc)
* ca.enablePrecertificateFlow (and all the associated RA/CA code)
* sa.AddSCTReceipt and sa.GetSCTReceipt RPCs
* publisher.SubmitToCT and publisher.SubmitToSingleCT RPCs
Fixes#3755.
We'd like to start using the DNS load balancer in the latest version of gRPC. That means putting all IPs for a service under a single hostname (or using a SRV record, but we're not taking that path). This change adds an sd-test-srv to act as our service discovery DNS service. It returns both Boulder IP addresses for any A lookup ending in ".boulder". This change also sets up the Docker DNS for our boulder container to defer to sd-test-srv when it doesn't know an answer.
sd-test-srv doesn't know how to resolve public Internet names like `github.com`. Resolving public names is required for the `godep-restore` test phase, so this change breaks out a copy of the boulder container that is used only for `godep-restore`.
This change implements a shim of a DNS resolver for gRPC, so that we can switch to DNS-based load balancing with the currently vendored gRPC, then when we upgrade to the latest gRPC we won't need a simultaneous config update.
Also, this change introduces a check at the end of the integration test that each backend received at least one RPC, ensuring that we are not sending all load to a single backend.
We're currently stuck on gRPC v1.1 because of a breaking change to certificate validation in gRPC 1.8. Our gRPC balancer uses a static list of multiple hostnames, and expects to validate against those hostnames. However gRPC expects that a service is one hostname, with multiple IP addresses, and validates all those IP addresses against the same hostname. See grpc/grpc-go#2012.
If we follow gRPC's assumptions, we can rip out our custom Balancer and custom TransportCredentials, and will probably have a lower-friction time in general.
This PR is the first step in doing so. In order to satisfy the "multiple IPs, one port" property of gRPC backends in our Docker container infrastructure, we switch to Docker's user-defined networking. This allows us to give the Boulder container multiple IP addresses on different local networks, and gives it different DNS aliases in each network.
In startservers.py, each shard of a service listens on a different DNS alias for that service, and therefore a different IP address. The listening port for each shard of a service is now identical.
This change also updates the gRPC service certificates. Now, each certificate that is used in a gRPC service (as opposed to something that is "only" a client) has three names. For instance, sa1.boulder, sa2.boulder, and sa.boulder (the generic service name). For now, we are validating against the specific hostnames. When we update our gRPC dependency, we will begin validating against the generic service name.
Incidentally, the DNS aliases feature of Docker allows us to get rid of some hackery in entrypoint.sh that inserted entries into /etc/hosts.
Note: Boulder now has a dependency on the DNS aliases feature in Docker. By default, docker-compose run creates a temporary container and doesn't assign any aliases to it. We now need to specify docker-compose run --use-aliases to get the correct behavior. Without --use-aliases, Boulder won't be able to resolve the hostnames it wants to bind to.
During periods of peak load, some RPCs are significantly delayed (on the order of seconds) by client-side blocking. HTTP/2 clients have to obey a "max concurrent streams" setting sent by the server. In Go's HTTP/2 implementation, this value [defaults to 250](https://github.com/golang/net/blob/master/http2/server.go#L56), so the gRPC default is also 250. So whenever there are more than 250 requests in progress at a time, additional requests will be delayed until there is a slot available.
During this peak load, we aren't hitting limits on CPU or memory, so we should increase the max concurrent streams limit to take better advantage of our available resources. This PR adds a config field to do that.
Fixes#3641.
gRPC passes deadline information through the RPC boundary, but client and server have the same deadline. Ideally we'd like the server to have a slightly tighter deadline than the client, so if one of the server's onward RPCs or other network calls times out, the server can pass back more detailed information to the client, rather than the client timing out the server and losing the opportunity to log more detailed information about which component caused the timeout.
In this change, I subtract 100ms from the deadline on the server side of our interceptors, using our existing serverInterceptor. I also check that there is at least 100ms remaining in which to do useful work, so the server doesn't begin a potentially expensive task only to abort it.
Fixes#3608.
Boulder is fairly noisy about gRPC connection errors. This is a mixed
blessing: Our gRPC configuration will try to reconnect until it hits
an RPC deadline, and most likely eventually succeed. In that case,
we don't consider those to really be errors. However, in cases where
a connection is repeatedly failing, we'd like to see errors in the
logs about connection failure, rather than "deadline exceeded." So
we want to keep logging of gRPC errors.
However, right now we get a lot of these errors logged during
integration tests. They make the output hard to read, and may disguise
more serious errors. So we'd like to avoid causing such errors in
normal integration test operation.
This change reorders the startup of Boulder components by their gRPC
dependencies, so everything's backend is likely to be up and running
before it starts. It also reverses that order for clean shutdowns,
and waits for each process to exit before signalling the next one.
With these changes, I still got connection errors. Taking listenbuddy
out of the gRPC path fixed them. I believe the issue is that
listenbuddy is not a truly transparent proxy. In particular, it
accepts an inbound TCP connection before opening an outbound TCP
connection. If opening that outbound connection results in "connection
refused," it closes the inbound connection. That means gRPC sees a
"connection closed" (or "connection reset"?) rather than "connection
refused". I'm guessing it handles those cases differently, explaining
the different error results.
We've been using listenbuddy to trigger disconnects while Boulder is
running, to ensure that gRPC's reconnect code works. I think we can
probably rely on gRPC's reconnect to work. The initial problem that
led us to start testing this was a configuration problem; now that
we have the configuration we want, we should be fine and don't need
to keep testing reconnects on every integration test run.
This removes the config and code to output to statsd.
- Change `cmd.StatsAndLogging` to output a `Scope`, not a `Statter`.
- Remove the prefixing of component name (e.g. "VA") in front of stats; this was stripped by `autoProm` but now no longer needs to be.
- Delete vendored statsd client.
- Delete `MockStatter` (generated by gomock) and `mocks.Statter` (hand generated) in favor of mocking `metrics.Scope`, which is the interface we now use everywhere.
- Remove a few unused methods on `metrics.Scope`, and update its generated mock.
- Refactor `autoProm` and add `autoRegisterer`, which can be included in a `metrics.Scope`, avoiding global state. `autoProm` now registers everything with the `prometheus.Registerer` it is given.
- Change va_test.go's `setup()` to not return a stats object; instead the individual tests that care about stats override `va.stats` directly.
Fixes#2639, #2733.
Deletes github.com/streadway/amqp and the various RabbitMQ setup tools etc. Changes how listenbuddy is used to proxy all of the gRPC client -> server connections so we test reconnection logic.
+49 -8,221 😁Fixes#2640 and #2562.
We have a number of stats already expressed using the statsd interface. During
the switchover period to direct Prometheus collection, we'd like to make those
stats available both ways. This change automatically exports any stats exported
using the statsd interface via Prometheus as well.
This is a little tricky because Prometheus expects all stats to by registered
exactly once. Prometheus does offer a mechanism to gracefully recover from
registering a stat more than once by handling a certain error, but it is not
safe for concurrent access. So I added a concurrency-safe wrapper that creates
Prometheus stats on demand and memoizes them.
In the process, made a few small required side changes:
- Clean "/" from method names in the gRPC interceptors. They are allowed in
statsd but not in Prometheus.
- Replace "127.0.0.1" with "boulder" as the name of our testing CT log.
Prometheus stats can't start with a number.
- Remove ":" from the CT-log stat names emitted by Publisher. Prometheus stats
can't include it.
- Remove a stray "RA" in front of some rate limit stats, since it was
duplicative (we were emitting "RA.RA..." before).
Note that this means two stat groups in particular are duplicated:
- Gostats* is duplicated with the default process-level stats exported by the
Prometheus library.
- gRPCClient* are duplicated by the stats generated by the go-grpc-prometheus
package.
When writing dashboards and alerts in the Prometheus world, we should be careful
to avoid these two categories, as they will disappear eventually. As a general
rule, if a stat is available with an all-lowercase name, choose that one, as it
is probably the Prometheus-native version.
In the long run we will want to create most stats using the native Prometheus
stat interface, since it allows us to use add labels to metrics, which is very
useful. For instance, currently our DNS stats distinguish types of queries by
appending the type to the stat name. This would be more natural as a label in
Prometheus.
Previously, all gRPC services used the same client and server certificates. Now,
each service has its own certificate, which it uses for both client and server
authentication, more closely simulating production.
This also adds aliases for each of the relevant hostnames in /etc/hosts. There
may be some issues if Docker decides to rewrite /etc/hosts while Boulder is
running, but this seems to work for now.
- Remove spinner from test.js. It made Travis logs hard to read.
- Listen on all interfaces for debugAddr. This makes it possible to check
Prometheus metrics for instances running in a Docker container.
- Standardize DNS timeouts on 1s and 3 retries across all configs. This ensures
DNS completes within the relevant RPC timeouts.
- Remove RA service queue from VA, since VA no longer uses the callback to RA on
completing a challenge.
Adds a gRPC server to the SA and SA gRPC Clients to the WFE, RA, CA, Publisher, OCSP updater, orphan finder, admin revoker, and expiration mailer.
Also adds a CA gRPC client to the OCSP Updater which was missed in #2193.
Fixes#2347.
As described in #2282, our gRPC code uses mutual TLS to authenticate both clients and servers. However, currently our gRPC servers will accept any client certificate signed by the internal CA we use to authenticate connections. Instead, we would like each server to have a list of which clients it will accept. This will improve security by preventing the compromise of one client private key being used to access endpoints unrelated to its intended scope/purpose.
This PR implements support for gRPC servers to specify a list of accepted client names. A `serverTransportCredentials` implementing `ServerHandshake` uses a `verifyClient` function to enforce that the connecting peer presents a client certificate with a SAN entry that matches an entry on the list of accepted client names
The `NewServer` function from `grpc/server.go` is updated to instantiate the `serverTransportCredentials` used by `grpc.NewServer`, specifying an accepted names list populated from the `cmd.GRPCServerConfig.ClientNames` config field.
The pre-existing client and server certificates in `test/grpc-creds/` are replaced by versions that contain SAN entries as well as subject common names. A DNS and an IP SAN entry are added to allow testing both methods of specifying allowed SANs. The `generate.sh` script is converted to use @jsha's `minica` tool (OpenSSL CLI is blech!).
An example client whitelist is added to each of the existing gRPC endpoints in config-next/ to allow the SAN of the test RPC client certificate.
Resolves#2282