Update the version of protoc-gen-go-grpc that we use to generate Go gRPC
code from our proto files, and update the versions of other gRPC tools
and libraries that we use to match. Turn on the new
`use_generic_streams` code generation flag to change how
protoc-gen-go-grpc generates implementations of our streaming methods,
from creating a wholly independent implementation for every stream to
using shared generic implementations.
Take advantage of this code-sharing to remove our SA "wrapper" methods,
now that they have truly the same signature as the SARO methods which
they wrap. Also remove all references to the old-style stream names
(e.g. foopb.FooService_BarMethodClient) and replace them with the new
underlying generic names, for the sake of consistency. Finally, also
remove a few custom stream test mocks, replacing them with the generic
mocks.ServerStreamClient.
Note that this PR does not change the names in //mocks/sa.go, to avoid
conflicts with work happening in the pursuit of
https://github.com/letsencrypt/boulder/issues/7476. Note also that this
PR updates the version of protoc-gen-go-grpc that we use to a specific
commit. This is because, although a new release of grpc-go itself has
been cut, the codegen binary is a separate Go module with its own
releases, and it hasn't had a new release cut yet. Tracking for that is
in https://github.com/grpc/grpc-go/issues/7030.
Update:
- golangci-lint from v1.42.1 to v1.46.2
- protoc from v3.15.6 to v3.20.1
- protoc-gen-go from v1.26.0 to v1.28.0
- protoc-gen-go-grpc from v1.1.0 to v1.2.0
- fpm from v1.14.0 to v1.14.2
Also remove a reference to go1.17.9 from one last place.
This does result in updating all of our generated .pb.go files, but only
to update the version number embedded in each file's header.
Fixes#6123
Create script which finds every .proto file in the repo and correctly
invokes `protoc` for each. Create a single file with a `//go:generate`
directive to invoke the new script. Delete all of the other generate.go
files, so that our proto generation is unified in one place.
Fixes#5453
Replace `core.Empty` with `google.protobuf.Empty` in all of our gRPC
methods which consume or return an empty protobuf. The golang core
proto libraries provide an empty message type, so there is no need
for us to reinvent the wheel.
This change is backwards-compatible and does not require a special
deploy. The protobuf message descriptions of `core.Empty` and
`google.protobuf.Empty` are identical, so their wire-formats are
indistinguishable and therefore interoperable / cross-compatible.
Fixes#5443
protoc now generates grpc code in a separate file from protobuf code.
Also, grpc servers are now required to embed an "unimplemented"
interface from the generated .pb.go file, which provides forward
compatibility.
Update the generate.go files since the invocation for protoc has changed
with the split into .pb.org and _grpc.pb.go.
Fixes#5368
Our proto files had a variety of indentation styles: 2 spaces,
4 spaces, 8 spaces, and tabs; sometimes mixed within the same
file. The proto3 style guide[1] says to use 2-space indents,
so this change standardizes on that.
[1] https://developers.google.com/protocol-buffers/docs/style
There are some changes to the code generated in the latest version, so
this modifies every .pb.go file.
Also, the way protoc-gen-go decides where to put files has changed, so
each generate.go gets the --go_opt=paths=source_relative flag to
tell protoc to continue placing output next to the input.
Remove staticcheck from build.sh; we get it via golangci-lint now.
Pass --no-document to gem install fpm; this is recommended in the fpm docs.
Basically a complete re-write/re-design of the forwarding concept introduced in
#4297 (sorry for the rapid churn here). Instead of nonce-services blindly
forwarding nonces around to each other in an attempt to find out who issued the
nonce we add an identifying prefix to each nonce generated by a service. The
WFEs then use this prefix to decide which nonce-service to ask to validate the
nonce.
This requires a slightly more complicated configuration at the WFE/2 end, but
overall I think ends up being a way cleaner, more understandable, easy to
reason about implementation. When configuring the WFE you need to provide two
forms of gRPC config:
* one gRPC config for retrieving nonces, this should be a DNS name that
resolves to all available nonce-services (or at least the ones you want to
retrieve nonces from locally, in a two DC setup you might only configure the
nonce-services that are in the same DC as the WFE instance). This allows
getting a nonce from any of the configured services and is load-balanced
transparently at the gRPC layer.
* a map of nonce prefixes to gRPC configs, this maps each individual
nonce-service to it's prefix and allows the WFE instances to figure out which
nonce-service to ask to validate a nonce it has received (in a two DC setup
you'd want to configure this with all the nonce-services across both DCs so
that you can validate a nonce that was generated by a nonce-service in another
DC).
This balancing is implemented in the integration tests.
Given the current remote nonce code hasn't been deployed anywhere yet this
makes a number of hard breaking changes to both the existing nonce-service
code, and the forwarding code.
Fixes#4303.