Update from go1.23.1 to go1.23.6 for our primary CI and release builds.
This brings in a few security fixes that aren't directly relevant to us.
Add go1.24.0 to our matrix of CI and release versions, to prepare for
switching to this next major version in prod.
This change guarantees compliance with CA/BF Ballot SC-073 "Compromised
and Weak Keys", which requires that at least 100 rounds of Fermat
Factorization be attempted:
> Section 6.1.1.3 Subscriber Key Pair Generation
> The CA SHALL reject a certificate request if... The Public Key
corresponds to an industry-demonstrated weak Private Key. For requests
submitted on or after November 15, 2024,... In the case of Close Primes
vulnerability (https://fermatattack.secvuln.info/), the CA SHALL reject
weak keys which can be factored within 100 rounds using Fermat’s
factorization method.
We choose 110 rounds to ensure a margin above and beyond the requirements.
Fixes https://github.com/letsencrypt/boulder/issues/7558
Change how goodkey.KeyPolicy keeps track of allowed RSA and ECDSA key
sizes, to make it slightly more flexible while still retaining the very
locked-down allowlist of only 6 acceptable key sizes (RSA 2048, 3076,
and 4092, and ECDSA P256, P384, and P521). Add a new constructor which
takes in a collection of allowed key sizes, so that users of the goodkey
package can customize which keys they accept. Rename the existing
constructor to make it clear that it uses hardcoded default values.
With these new constructors available, make all of the goodkey.KeyPolicy
member fields private, so that a KeyPolicy can only be built via these
constructors.
In https://github.com/letsencrypt/boulder/pull/7005 several safety
checks were added to the `ceremony` tool:
This change extracts the `RawSubject` to `RawIssuer` DER byte comparison
into the `//linter` package proper so that it can serve both `//ca` and
`//cmd/ceremony`.
Adds a helper function `verifyTBSCertificateDeterminism` to `//ca`
similar to an existing check in `//cmd/ceremony`. This code is not
shared because we want `//cmd/ceremony` to largely stand alone from
boulder proper. The helper performs a byte comparison on the
`RawTBSCertificate` DER bytes for a given linting certificate and leaf
certificate. The goal is to verify that `x509.CreateCertificate` was
deterministic and produced identical DER bytes after each signing
operation.
Fixes https://github.com/letsencrypt/boulder/issues/6965
Adds post-issuance zlint linting to the `rootCeremony`,
`intermediateCeremony`, and `crossCertCeremony` ceremonies. It calls
zlint directly rather than using the existing
`issueLintCertAndPerformLinting` because the throwaway linting key pair
is unnecessary at this point.
Fixes https://github.com/letsencrypt/boulder/issues/7354
* Allows the ceremony tool to add the `onlyContainsCACerts` flag to the
`IssuingDistributionPoint` extension[1] for CRLs.
* Add a lint to detect basic usage of this new flag.
* Add a helper function which doesn't (yet) exist in golang
x/crypto/cryptobyte named `ReadOptionalASN1BooleanWithTag` which
searches for an optional DER-encoded ASN.1 element tagged with a given
tag e.g. onlyContainsUserCerts and reports values back to the caller.
* Each revoked certificate in the CRL config is checked for is `IsCA` to
maintain conformance with RFC 5280 Section 6.3.3 b.2.iii [2].
> (iii) If the onlyContainsCACerts boolean is asserted in the
> IDP CRL extension, verify that the certificate
> includes the basic constraints extension with the cA
> boolean asserted.
Fixes https://github.com/letsencrypt/boulder/issues/7047
1. https://datatracker.ietf.org/doc/html/rfc5280#section-5.2.5
2. https://datatracker.ietf.org/doc/html/rfc5280#section-6.3.3
Delete our forked version of the x509 library, and update all call-sites
to use the version that we upstreamed and got released in go1.21. This
requires making a few changes to calling code:
- replace crl_x509.RevokedCertificate with x509.RevocationListEntry
- replace RevocationList.RevokedCertificates with
RevocationList.RevokedCertificateEntries
- make RevocationListEntry.ReasonCode a non-pointer integer
Our lints cannot yet be updated to use the new types and fields, because
those improvements have not yet been adopted by the zcrypto/x509 package
used by the linting framework.
Fixes https://github.com/letsencrypt/boulder/issues/6741
In `//cmd/ceremony`:
* Added `CertificateToCrossSignPath` to the `cross-certificate` ceremony
type. This new input field takes an existing certificate that will be
cross-signed and performs checks against the manually configured data in
each ceremony file.
* Added byte-for-byte subject/issuer comparison checks to root,
intermediate, and cross-certificate ceremonies to detect that signing is
happening as expected.
* Added Fermat factorization check from the `//goodkey` package to all
functions that generate new key material.
In `//linter`:
* The Check function now exports linting certificate bytes. The idea is
that a linting certificate's `tbsCertificate` bytes can be compared
against the final certificate's `tbsCertificate` bytes as a verification
that `x509.CreateCertificate` was deterministic and produced identical
DER bytes after each signing operation.
Other notable changes:
* Re-orders the issuers list in each CA config to match staging and
production. There is an ordering issue mentioned by @aarongable two
years ago on IN-5913 that didn't make it's way back to this repository.
> Order here matters – the default chain we serve for each intermediate
should be the first listed chain containing that intermediate.
* Enables `ECDSAForAll` in `config-next` CA configs to match Staging.
* Generates 2x new ECDSA subordinate CAs cross-signed by an RSA root and
adds these chains to the WFE for clients to download.
* Increased the test.sh startup timeout to account for the extra
ceremony run time.
Fixes https://github.com/letsencrypt/boulder/issues/7003
---------
Co-authored-by: Aaron Gable <aaron@letsencrypt.org>
Update zlint to v3.5.0, which introduces scaffolding for running lints
over CRLs.
Convert all of our existing CRL checks to structs which match the zlint
interface, and add them to the registry. Then change our linter's
CheckCRL function, and crl-checker's Validate function, to run all lints
in the zlint registry.
Finally, update the ceremony tool to run these lints as well.
This change touches a lot of files, but involves almost no logic
changes. It's all just infrastructure, changing the way our lints and
their tests are shaped, and moving test files into new homes.
Fixes https://github.com/letsencrypt/boulder/issues/6934
Fixes https://github.com/letsencrypt/boulder/issues/6979
- Require `letsencrypt/validator` package.
- Add a framework for registering configuration structs and any custom
validators for each Boulder component at `init()` time.
- Add a `validate` subcommand which allows you to pass a `-component`
name and `-config` file path.
- Expose validation via exported utility functions
`cmd.LookupConfigValidator()`, `cmd.ValidateJSONConfig()` and
`cmd.ValidateYAMLConfig()`.
- Add unit test which validates all registered component configuration
structs against test configuration files.
Part of #6052
Use constants from the go stdlib time package, such as time.DateTime and
time.RFC3339, when parsing and formatting timestamps. Additionally,
simplify or remove some of our uses of parsing timestamps, such as to
set fake clocks in tests.
Adds a custom YAML unmarshaller in the `//strictyaml` package based on
`go-yaml/yaml v3` with unique key detection enabled and ensures that
target struct is able to contain all target fields.
Fixes https://github.com/letsencrypt/boulder/issues/3344.
The iotuil package has been deprecated since go1.16; the various
functions it provided now exist in the os and io packages. Replace all
instances of ioutil with either io or os, as appropriate.
Add a new CA gRPC method named `GenerateCRL`. In the
style of the existing `GenerateOCSP` method, this new endpoint
is implemented as a separate service, for which the CA binary
spins up an additional gRPC service.
This method uses gRPC streaming for both its input and output.
For input, the stream must contain exactly one metadata message
identifying the crl number, issuer, and timestamp, and then any
number of messages identifying a single certificate which should
be included in the CRL. For output, it simply streams chunks of
bytes.
Fixes#6161
The gopkg.in/yaml.v2 package has a potential crash when
parsing malicious input. Although we only use the yaml
package to parse trusted configuration, update to v3 anyway.
We have decided that we don't like the if err := call(); err != nil
syntax, because it creates confusing scopes, but we have not cleaned up
all existing instances of that syntax. However, we have now found a
case where that syntax enables a bug: It caused readers to believe that
a later err = call() statement was assigning to an already-declared err
in the local scope, when in fact it was assigning to an
already-declared err in the parent scope of a closure. This caused our
ineffassign and staticcheck linters to be unable to analyze the
lifetime of the err variable, and so they did not complain when we
never checked the actual value of that error.
This change standardizes on the two-line error checking syntax
everywhere, so that we can more easily ensure that our linters are
correctly analyzing all error assignments.
The resulting `boulder` binary can be invoked by different names to
trigger the behavior of the relevant subcommand. For instance, symlinking
and invoking as `boulder-ca` acts as the CA. Symlinking and invoking as
`boulder-va` acts as the VA.
This reduces the .deb file size from about 200MB to about 20MB.
This works by creating a registry that maps subcommand names to `main`
functions. Each subcommand registers itself in an `init()` function. The
monolithic `boulder` binary then checks what name it was invoked with
(`os.Args[0]`), looks it up in the registry, and invokes the appropriate
`main`. To avoid conflicts, all of the old `package main` are replaced
with `package notmain`.
To get the list of registered subcommands, run `boulder --list`. This
is used when symlinking all the variants into place, to ensure the set
of symlinked names matches the entries in the registry.
Fixes#5692
In go1.17, the `x509.CreateCertificate()` method fails if the provided
Signer (private key) and Parent (cert with public key) do not match.
This change both updates the lint library to create and use an issuer
cert whose public key matches the throwaway private key used for lint
signatures, and overhauls its public interface for readability and
simplicity.
Rename the `lint` library to `linter`, to allow other methods to be
renamed to reduce word repetition. Reduce the linter library interface
to three functions: `Check()`, `New()`, and `Linter.Check()` by making
all helper functions private. Refactor the top-level `Check()` method to
rely on `New()` and `Linter.Check()` behind the scenes. Finally, create
a new helper method for creating a lint issuer certificate, call this
new method from `New()`, and store the result in the `Linter` struct.
Part of #5480
- Change generate CSR to only use a Subject and signer in creation
- Add a method to certProfile to return subject
- Validate that CSR input does not contain unwanted values
- Update tests and documentation about ceremony
Fix: #5318
When issuing a new root or intermediate cert, we should take every
precaution possible to ensure that these certs are well-formed.
This change introduces a new step prior to issuing and writing a new CA
cert. We generate a new disposable private key based on the type of the
key being used in the real ceremony, then use this key to sign a fake
certificate for the sole purpose of linting. We then pass this through
the full suite of zlint's checks before proceeding with the actual
issuance.
Since this code path is largely similar to the pre-issuance linting done
by the new boulder signer tool, this change also factors it out into a
small, single-purpose `lint` package.
Fixes#5051
This moves x509Signer from cmd/ceremony into pkcs11helpers. It also
adds helper functions getPublicKeyID and getPrivateKey, copied and
adapted from pkcs11key. These act as counterparts to the existing
GetRSAPublicKey and GetECDSAPublicKey, which go from an object handle
to a Go public key object (and are used after key generation).
Fixes#4918
We had some duplicated code related to opening the PKCS#11 session and
generating a signer, so I pulled it out into a separate function. This
function also takes an issuer so it can verify that the public key
matches what's expected.
Our PKCS11 config sections fall into two categories:
- Those used for generating keys, where the HSM is both an input and an
output, storing the resulting key in a specified slot.
- Those used for signing certs, where the HSM is an input.
This creates dedicated config structs for these two, reducing
duplication in defining overall config structs. This also makes
defining test cases involving these config structs much more concise.
Fixes#4915
Initially this was going to just be a bool on the `intermediate` type,
but there is enough different in terms of what is generated that I think
it makes sense to add a completely separate type. Internally they share
the same config, since basically everything else is the same (apart from
a few constraints on what fields can be populated in the profile).
This additionally fixes a bug where we weren't actually validating
root/intermediate/key configs.
Fixes#4741
Merges gen-ca and gen-key into a single tool that can be used to complete a key/certificate generation ceremony. The driving idea here is that instead of having to write out multiple long commands in a specific order in order to complete a ceremony a configuration file is fed to a single binary. This config file contains all of the information needed to complete the ceremony, and can be easily tested outside of the secure environment before hand without fear of later typing a command/flag incorrectly etc.
The tooling works against the test hardware I have (there are minimal changes to the actual PKCS#11 code behind the scenes). Specific attention should be given to the documentation, and the general UX of the tool.
Fixes#4639 and fixes#4667.