A very large number of the logger calls are of the form log.Function(fmt.Sprintf(...)).
Rather than sprinkling fmt.Sprintf at every logger call site, provide formatting versions
of the logger functions and call these directly with the format and arguments.
While here remove some unnecessary trailing newlines and calls to String/Error.
Now that #3638 has been deployed to all of the RA instances there are no
more RPC clients using the SA's `CountCertificatesRange` RPC.
This commit deletes the implementation, the RPC definition & wrappers,
and all the test code/mocks.
The Boulder orphan-finder command uses the SA's AddCertificate RPC to add orphaned certificates it finds back to the DB. Prior to this commit this RPC always set the core.Certificate.Issued field to the
current time. For the orphan-finder case this meant that the Issued date would incorrectly be set to when the certificate was found, not when it was actually issued. This could cause cert-checker to alarm based on the unusual delta between the cert NotBefore and the core.Certificate.Issued value.
This PR updates the AddCertificate RPC to accept an optional issued timestamp in the request arguments. In the SA layer we address deployability concerns by setting a default value of the current time when none is explicitly provided. This matches the classic behaviour and will let an old RA communicate with a new SA.
This PR updates the orphan-finder to provide an explicit issued time to sa.AddCertificate. The explicit issued time is calculated using the found certificate's NotBefore and the configured backdate.
This lets the orphan-finder set the true issued time in the core.Certificate object, avoiding any cert-checker alarms.
Resolves#3624
* SA: Add Order "Ready" status, feature flag.
This commit adds the new "Ready" status to `core/objects.go` and updates
`sa.statusForOrder` to use it conditionally for orders with all valid
authorizations that haven't been finalized yet. This state is used
conditionally based on the `features.OrderReadyStatus` feature flag
since it will likely break some existing clients that expect status
"Processing" for this state. The SA unit test for `statusForOrder` is
updated with a "ready" status test case.
* RA: Enforce order ready status conditionally.
This commit updates the RA to conditionally expect orders that are being
finalized to be in the "ready" status instead of "pending". This is
conditionally enforced based on the `OrderReadyStatus` feature flag.
Along the way the SA was changed to calculate the order status for the
order returned in `sa.NewOrder` dynamically now that it could be
something other than "pending".
* WFE2: Conditionally enforce order ready status for finalization.
Similar to the RA the WFE2 should conditionally enforce that an order's
status is either "ready" or "pending" based on the "OrderReadyStatus"
feature flag.
* Integration: Fix `test_order_finalize_early`.
This commit updates the V2 `test_order_finalize_early` test for the
"ready" status. A nice side-effect of the ready state change is that we
no longer invalidate an order when it is finalized too soon because we
can reject the finalization in the WFE. Subsequently the
`test_order_finalize_early` testcase is also smaller.
* Integration: Test classic behaviour w/o feature flag.
In the previous commit I fixed the integration test for the
`config/test-next` run that has the `OrderReadyStatus` feature flag set
but broke it for the `config/test` run without the feature flag.
This commit updates the `test_order_finalize_early` test to work
correctly based on the feature flag status in both cases.
This PR updates the RA such that certificateRequestEvent objects created during issuance and written to the audit log as JSON also include a new Authorizations field. This field is a map of the form map[string]certificateRequestAuthz and can be used to map from an identifier name appearing in the associated certificate to a certificateRequestAuthz object. Each of the certificateRequestAuthz objects holds an authorization ID and the type of challenge that made the authorization valid.
Example Audit log output (with the JSON pulled out and pretty-printed):
{
"ID":"0BjPk94KlxExRRIQ3kslRVSJ68KMaTh416chRvq0wyA",
"Requester":666,
"SerialNumber":"ff699d91cab5bc84f1bc97fc71e4e27abc1a",
"VerifiedFields":["subject.commonName","subjectAltName"],
"CommonName":"rand.44634cbf.xyz",
"Names":["rand.44634cbf.xyz"],
"NotBefore":"2018-03-28T19:50:07Z",
"NotAfter":"2018-06-26T19:50:07Z",
"RequestTime":"2018-03-28T20:50:07.234038859Z",
"ResponseTime":"2018-03-28T20:50:07.278848954Z",
"Authorizations": {
"rand.44634cbf.xyz" : {
"ID":"jGt37Rnvfr0nhZn-wLkxrQxc2HBfV4t6TSraRiGnNBM",
"ChallengeType":"http-01"
}
}
}
Resolves#3253
Adds SCT embedding to the certificate issuance flow. When a issuance is requested a precertificate (the requested certificate but poisoned with the critical CT extension) is issued and submitted to the required CT logs. Once the SCTs for the precertificate have been collected a new certificate is issued with the poison extension replace with a SCT list extension containing the retrieved SCTs.
Fixes#2244, fixes#3492 and fixes#3429.
This commit updates the RA to make the notion of submitting
a KeyAuthorization value as part of the ra.UpdateAuthorization call
optional. If set, the value is enforced against expected and an error is
returned if the provided authorization isn't correct. If it isn't set
the RA populates the field with the computed authorization for the VA to
enforce against the value it sees in challenges. This retains the legacy
behaviour of the V1 API. The V2 API will never unmarshal a provided
key authorization.
The ACMEv2/WFEv2 prepChallengeForDisplay function is updated to strip
the ProvidedKeyAuthorization field before sending the challenge object
back to a client. ACMEv1/WFEv1 continue to return the KeyAuthorization
in challenges to avoid breaking clients that are relying on this legacy
behaviour.
For deployability ease this commit retains the name of the
core.Challenge.ProvidedKeyAuthorization field even though it should
be called core.Challenge.ComputedKeyAuthorization now that it isn't
set based on the client's provided key authz. This will be easier as
a follow-up change.
Resolves#3514
This code was never enabled in production. Our original intent was to
ship this as part of the ACMEv2 API. Before that could happen flaws were
identified in TLS-SNI-01|02 that resulted in TLS-SNI-02 being removed
from the ACME protocol. We won't ever be enabling this code and so we
might as well remove it.
Previously we introduced the concept of a "pending orders per account
ID" rate limit. After struggling with making an implementation of this
rate limit perform well we reevaluated the problem and decided a "new
orders per account per time window" rate limit would be a better fit for
ACMEv2 overall.
This commit introduces the new newOrdersPerAccount rate limit. The RA
now checks this before creating new pending orders in ra.NewOrder. It
does so after order reuse takes place ensuring the rate limit is only
applied in cases when a distinct new pending order row would be created.
To accomplish this a migration for a new orders field (created) and an
index over created and registrationID is added. It would be possible to
use the existing expires field for this like we've done in the past, but that
was primarily to avoid running a migration on a large table in prod. Since
we don't have that problem yet for V2 tables we can Do The Right Thing
and add a column.
For deployability the deprecated pendingOrdersPerAccount code & SA
gRPC bits are left around. A follow-up PR will be needed to remove
those (#3502).
Resolves#3410
Use `t.Helper` and `t.Fatalf` instead of our own versions.
Remove some unused or single-user helpers.
Make the output of `AssetUnmarshaledEquals` clearer by showing one line per field.
This commit resolves the case where an error during finalization occurs.
Prior to this commit if an error (expected or otherwise) occurred after
setting an order to status processing at the start of order
finalization the order would be stuck processing forever.
The SA now has a `SetOrderError` RPC that can be used by the RA to
persist an error onto an order. The order status calculation can use
this error to decide if the order is invalid. The WFE is updated to
write the error to the order JSON when displaying the order information.
Prior to this commit the order protobuf had the error field as
a `[]byte`. It doesn't seem like this is the right decision, we have
a specific protobuf type for ProblemDetails and so this commit switches
the error field to use it. The conversion to/from `[]byte` is done with
the model by the SA.
An integration test is included that prior to this commit left an order
in a stuck processing state. With this commit the integration test
passes as expected.
Resolves https://github.com/letsencrypt/boulder/issues/3403
The SA RPC previously called `GetOrderAuthorizations` only returns
**valid, unexpired** authorizations. This commit updates the name to
emphasize that it only returns valid order authzs.
This PR is a rework of what was originally https://github.com/letsencrypt/boulder/pull/3382, integrating the design feedback proposed by @jsha: https://github.com/letsencrypt/boulder/pull/3382#issuecomment-359912549
This PR removes the stored Order status field and replaces it with a value that is calculated on-the-fly by the SA when fetching an order, based on the order's associated authorizations.
In summary (and order of precedence):
* If any of the order's authorizations are invalid, the order is invalid.
* If any of the order's authorizations are deactivated, the order is deactivated.
* If any of the order's authorizations are pending, the order is pending.
* If all of the order's authorizations are valid, and there is a certificate serial, the order is valid.
* If all of the order's authorizations are valid, and we have began processing, but there is no certificate serial, the order is processing.
* If all of the order's authorizations are valid, and we haven't processing, then the order is pending waiting a finalization request.
This avoids having to explicitly update the order status when an associated authorization changes status.
The RA's implementation of new-order is updated to only reuse an existing order if the calculated status is pending. This avoids giving back invalid or deactivated orders to clients.
Resolves#3333
This change adds a feature flag, TLSSNIRevalidation. When it is enabled, Boulder
will create new authorization objects with TLS-SNI challenges if the requesting
account has issued a certificate with the relevant domain name, and was the most
recent account to do so*. This setting overrides the configured list of
challenges in the PolicyAuthority, so even if TLS-SNI is disabled in general, it
will be enabled for revalidation.
Note that this interacts with EnforceChallengeDisable. Because
EnforceChallengeDisable causes additional checked at validation time and at
issuance time, we need to update those two places as well. We'll send a
follow-up PR with that.
*We chose to make this work only for the most recent account to issue, even if
there were overlapping certificates, because it significantly simplifies the
database access patterns and should work for 95+% of cases.
Note that this change will let an account revalidate and reissue for a domain
even if the previous issuance on that account used http-01 or dns-01. This also
simplifies implementation, and fits within the intent of the mitigation plan: If
someone previously issued for a domain using http-01, we have high confidence
that they are actually the owner, and they are not going to "steal" the domain
from themselves using tls-sni-01.
Also note: This change also doesn't work properly with ReusePendingAuthz: true.
Specifically, if you attempted issuance in the last couple days and failed
because there was no tls-sni challenge, you'll still have an http-01 challenge
lying around, and we'll reuse that; then your client will fail due to lack of
tls-sni challenge again.
This change was joint work between @rolandshoemaker and @jsha.
This updates the PA component to allow authorization challenge types that are globally disabled if the account ID owning the authorization is on a configured whitelist for that challenge type.
This commit adds pending order reuse. Subsequent to this commit multiple
add-order requests from the same account ID for the same set of order
names will result in only one order being created. Orders are only
reused while they are not expired. Finalized orders will not be reused
for subsequent new-order requests allowing for duplicate order issuance.
Note that this is a second level of reuse, building on the pending
authorization reuse that's done between separate orders already.
To efficiently find an appropriate order ID given a set of names,
a registration ID, and the current time a new orderFqdnSets table is
added with appropriate indexes and foreign keys.
Resolves#3258
This commit adds a new rate limit to restrict the number of outstanding
pending orders per account. If the threshold for this rate limit is
crossed subsequent new-order requests will return a 429 response.
Note: Since this the rate limit object itself defines an `Enabled()`
test based on whether or not it has been configured there is **not**
a feature flag for this change.
Resolves https://github.com/letsencrypt/boulder/issues/3246
This PR implements issuance for wildcard names in the V2 order flow. By policy, pending authorizations for wildcard names only receive a DNS-01 challenge for the base domain. We do not re-use authorizations for the base domain that do not come from a previous wildcard issuance (e.g. a normal authorization for example.com turned valid by way of a DNS-01 challenge will not be reused for a *.example.com order).
The wildcard prefix is stripped off of the authorization identifier value in two places:
When presenting the authorization to the user - ACME forbids having a wildcard character in an authorization identifier.
When performing validation - We validate the base domain name without the *. prefix.
This PR is largely a rewrite/extension of #3231. Instead of using a pseudo-challenge-type (DNS-01-Wildcard) to indicate an authorization & identifier correspond to the base name of a wildcard order name we instead allow the identifier to take the wildcard order name with the *. prefix.
This PR implements order finalization for the ACME v2 API.
In broad strokes this means:
* Removing the CSR from order objects & the new-order flow
* Adding identifiers to the order object & new-order
* Providing a finalization URL as part of orders returned by new-order
* Adding support to the WFE's Order endpoint to receive finalization POST requests with a CSR
* Updating the RA to accept finalization requests and to ensure orders are fully validated before issuance can proceed
* Updating the SA to allow finding order authorizations & updating orders.
* Updating the CA to accept an Order ID to log when issuing a certificate corresponding to an order object
Resolves#3123
For the new-order endpoint only. This does some refactoring of the order of operations in `ra.NewAuthorization` as well in order to reduce the duplication of code relating to creating pending authorizations, existing tests still seem to work as intended... A close eye should be given to this since we don't have integration tests yet that test it end to end. This also changes the inner type of `grpc.StorageAuthorityServerWrapper` to `core.StorageAuthority` so that we can avoid a circular import that is created by needing to import `grpc.AuthzToPB` and `grpc.PBToAuthz` in `sa/sa.go`.
This is a big change but should considerably improve the performance of the new-order flow.
Fixes#2955.
* Remove all of the errors under core. Their purpose is now served by errors, and they were almost entirely unused. The remaining uses were switched to errors.
* Remove errors.NotSupportedError. It was used in only one place (ca.go), and that usage is more appropriately a ServerInternal error.
Stub out IssueCertificateForPrecertificate() enough so that we can continue with the PRs that implement & test it in parallel with PRs that implement and test the calling side (via mock implementations of the CA side).
* CA: Stub IssuePrecertificate gPRC method.
* CA: Implement IssuePrecertificate.
* CA: Test Precertificate flow in TestIssueCertificate().
move verification of certificate storage
IssuePrecertificate tests
Add CT precertificate poison extension to CFSSL whitelist.
CFSSL won't allow us to add an extension to a certificate unless that
certificate is in the whitelist.
According to its documentation, "Extensions requested in the CSR are
ignored, except for those processed by ParseCertificateRequest (mainly
subjectAltName)." Still, at least we need to add tests to make sure a
poison extension in a CSR isn't copied into the final certificate.
This allows us to avoid making invasive changes to CFSSL.
* CA: Test precertificate issuance in TestInvalidCSRs().
* CA: Only support IssuePrecertificate() if it is explicitly enabled.
* CA: Test that we produce CT poison extensions in the valid form.
The poison extension must be critical in order to work correctly. It probably wouldn't
matter as much what the value is, but the spec requires the value to be ASN.1 NULL, so
verify that it is.
Switch certificates and certificateStatus to use autoincrement primary keys to avoid performance problems with clustered indexes (fixes#2754).
Remove empty externalCerts and identifierData tables (fixes#2881).
Make progress towards deleting unnecessary LockCol and subscriberApproved fields (#856, #873) by making them NULLable and not including them in INSERTs and UPDATEs.
The existing ReusePendingAuthz implementation had some bugs:
It would recycle deactivated authorizations, which then couldn't be fulfilled. (#2840)
Since it was implemented in the SA, it wouldn't get called until after the RA checks the Pending Authorizations rate limit. Which means it wouldn't fulfill its intended purpose of making accounts less likely to get stuck in a Pending Authorizations limited state. (#2831)
This factors out the reuse functionality, which used to be inside an "if" statement in the SA. Now the SA has an explicit GetPendingAuthorization RPC, which gets called from the RA before calling NewPendingAuthorization. This happens to obsolete #2807, by putting the recycling logic for both valid and pending authorizations in the RA.
This commit replaces the Boulder dependency on
gopkg.in/square/go-jose.v1 with gopkg.in/square/go-jose.v2. This is
necessary both to stay in front of bitrot and because the ACME v2 work
will require a feature from go-jose.v2 for JWS validation.
The largest part of this diff is cosmetic changes:
Changing import paths
jose.JsonWebKey -> jose.JSONWebKey
jose.JsonWebSignature -> jose.JSONWebSignature
jose.JoseHeader -> jose.Header
Some more significant changes were caused by updates in the API for
for creating new jose.Signer instances. Previously we constructed
these with jose.NewSigner(algorithm, key). Now these are created with
jose.NewSigner(jose.SigningKey{},jose.SignerOptions{}). At present all
signers specify EmbedJWK: true but this will likely change with
follow-up ACME V2 work.
Another change was the removal of the jose.LoadPrivateKey function
that the wfe tests relied on. The jose v2 API removed these functions,
moving them to a cmd's main package where we can't easily import them.
This function was reimplemented in the WFE's test code & updated to fail
fast rather than return errors.
Per CONTRIBUTING.md I have verified the go-jose.v2 tests at the imported
commit pass:
ok gopkg.in/square/go-jose.v2 14.771s
ok gopkg.in/square/go-jose.v2/cipher 0.025s
? gopkg.in/square/go-jose.v2/jose-util [no test files]
ok gopkg.in/square/go-jose.v2/json 1.230s
ok gopkg.in/square/go-jose.v2/jwt 0.073s
Resolves#2880
This is a step towards the long-term goal of eliminating wrappers and a step
towards the short-term goal of making it easier to refactor ca/ca_test.go to
add testing of precertificate-based issuance.
Prior to this PR the SA's `CountRegistrationsByIP` treated IPv6
differently than IPv4 by counting registrations within a /48 for IPv6 as
opposed to exact matches for IPv4. This PR updates
`CountRegistrationsByIP` to treat IPv4 and IPv6 the
same, always matching exactly. The existing RegistrationsPerIP rate
limit policy will be applied against this exact matching count.
A new `CountRegistrationsByIPRange` function is added to the SA that
performs the historic matching process, e.g. for IPv4 it counts exactly
the same as `CountRegistrationsByIP`, but for IPv6 it counts within
a /48.
A new `RegistrationsPerIPRange` rate limit policy is added to allow
configuring the threshold/window for the fuzzy /48 matching registration
limit. Stats for the "Exceeded" and "Pass" events for this rate limit are
separated into a separate `RegistrationsByIPRange` stats scope under
the `RateLimit` scope to allow us to track it separate from the exact
registrations per IP rate limit.
Resolves https://github.com/letsencrypt/boulder/issues/2738
This PR introduces a new feature flag "IPv6First".
When the "IPv6First" feature is enabled the VA's HTTP dialer and TLS SNI
(01 and 02) certificate fetch requests will attempt to automatically
retry when the initial connection was to IPv6 and there is an IPv4
address available to retry with.
This resolves https://github.com/letsencrypt/boulder/issues/2623
This PR removes two berrors that aren't used anywhere in the codebase:
TooManyRequests , a holdover from AMQP, and is no longer used.
UnsupportedIdentifier, used just for rejecting IDNs, which we no longer do.
In addition, the SignatureValidation error was only used by the WFE so it is moved there and unexported.
Note for reviewers: To remove berrors.UnsupportedIdentifierError I replaced the errIDNNotSupported error in policy/pa.go with a berrors.MalformedError with the same name. This allows removing UnsupportedIdentifierError ahead of #2712 which removes the IDNASupport feature flag. This seemed OK to me, but I can restore UnsupportedIdentifierError and clean it up after 2712 if that's preferred.
Resolves#2709
Prior to this PR if a domain was an exact match to a public suffix
list entry the certificates per name rate limit was applied based on the
count of certificates issued for that exact name and all of its
subdomains.
This PR introduces an exception such that exact public suffix
matches correctly have the certificate per name rate limit applied based
on only exact name matches.
In order to accomplish this a new RPC is added to the SA
`CountCertificatesByExactNames`. This operates similar to the existing
`CountCertificatesByNames` but does *not* include subdomains in the
count, only exact matches to the names provided. The usage of this new
RPC is feature flag gated behind the "CountCertificatesExact" feature flag.
The RA unit tests are updated to test the new code paths both with and
without the feature flag enabled.
Resolves#2681
This change changes the returning values from boolean to error.
It makes `checkConsistency` an internal function and removes the
optional argument in favor of making checks explicit where they are
used.
It also renames those functions to CheckConsistency* to not
give the impression of still returning boolean values.
Signed-off-by: David Calavera <david.calavera@gmail.com>
Generate first OCSP response in ca.IssueCertificate instead of ocsp-updater.newCertificateTick
if features.GenerateOCSPEarly is enabled. Adds a new field to the sa.AddCertiifcate RPC for
the OCSP response and only adds it to the certificate status + sets ocspLastUpdated if it is a
non-empty slice. ocsp-updater.newCertificateTick stays the same so we can catch certificates
that were successfully signed + stored but a OCSP response couldn't be generated (for whatever
reason).
Fixes#2477.
This patch removes all usages of the `core.XXXError` and almost all usages of `probs` outside of the WFE and VA and replaces them with a unified internal error type. Since the VA uses `probs.ProblemDetails` quite extensively in challenges, and currently stores them in the DB I've saved this change for another change (it'll also require a migration). Since `ProblemDetails` should only ever be exposed to end-users all of its related logic should be moved into the `WFE` but since it still needs to be exposed to the VA and SA I've left it in place for now.
The new internal `errors` package offers the same convenience functions as `probs` does as well as a new simpler type testing method. A few small changes have also been made to error messages, mainly adding the library and function name to internal server errors for easier debugging (i.e. where a number of functions return the exact same errors and there is no other way to distinguish which method threw the error).
Also adds proper encoding of internal errors transferred over gRPC (the current encoding scheme is kept for `core` and `probs` errors since it'll be ideally be removed after we deploy this and follow-up changes) using `grpc/metadata` instead of the gRPC status codes.
Fixes#2507. Updates #2254 and #2505.