boulder/goodkey/good_key.go

426 lines
16 KiB
Go
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package goodkey
import (
"context"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"errors"
"fmt"
"math/big"
"sync"
"github.com/letsencrypt/boulder/core"
"github.com/titanous/rocacheck"
)
// To generate, run: primes 2 752 | tr '\n' ,
var smallPrimeInts = []int64{
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,
109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,
173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283,
293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359,
367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431,
433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491,
499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571,
577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641,
643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709,
719, 727, 733, 739, 743, 751,
}
// singleton defines the object of a Singleton pattern
var (
smallPrimesSingleton sync.Once
smallPrimesProduct *big.Int
)
type Config struct {
// AllowedKeys enables or disables specific key algorithms and sizes. If
// nil, defaults to just those keys allowed by the Let's Encrypt CPS.
AllowedKeys *AllowedKeys
// FermatRounds is an integer number of rounds of Fermat's factorization
// method that should be performed to attempt to detect keys whose modulus can
// be trivially factored because the two factors are very close to each other.
// If this config value is empty or 0, it will default to 110 rounds.
FermatRounds int
}
// AllowedKeys is a map of six specific key algorithm and size combinations to
// booleans indicating whether keys of that type are considered good.
type AllowedKeys struct {
// Baseline Requirements, Section 6.1.5 requires key size >= 2048 and a multiple
// of 8 bits: https://github.com/cabforum/servercert/blob/main/docs/BR.md#615-key-sizes
// Baseline Requirements, Section 6.1.1.3 requires that we reject any keys which
// have a known method to easily compute their private key, such as Debian Weak
// Keys. Our enforcement mechanism relies on enumerating all Debian Weak Keys at
// common key sizes, so we restrict all issuance to those common key sizes.
RSA2048 bool
RSA3072 bool
RSA4096 bool
// Baseline Requirements, Section 6.1.5 requires that ECDSA keys be valid
// points on the NIST P-256, P-384, or P-521 elliptic curves.
ECDSAP256 bool
ECDSAP384 bool
ECDSAP521 bool
}
// LetsEncryptCPS encodes the five key algorithms and sizes allowed by the Let's
// Encrypt CPS CV-SSL Subscriber Certificate Profile: RSA 2048, RSA 3076, RSA
// 4096, ECDSA 256 and ECDSA P384.
// https://github.com/letsencrypt/cp-cps/blob/main/CP-CPS.md#dv-ssl-subscriber-certificate
// If this is ever changed, the CP/CPS MUST be changed first.
func LetsEncryptCPS() AllowedKeys {
return AllowedKeys{
RSA2048: true,
RSA3072: true,
RSA4096: true,
ECDSAP256: true,
ECDSAP384: true,
}
}
// ErrBadKey represents an error with a key. It is distinct from the various
// ways in which an ACME request can have an erroneous key (BadPublicKeyError,
// BadCSRError) because this library is used to check both JWS signing keys and
// keys in CSRs.
var ErrBadKey = errors.New("")
func badKey(msg string, args ...interface{}) error {
return fmt.Errorf("%w%s", ErrBadKey, fmt.Errorf(msg, args...))
}
// BlockedKeyCheckFunc is used to pass in the sa.BlockedKey functionality to KeyPolicy,
// rather than storing a full sa.SQLStorageAuthority. This allows external
// users who dont want to import all of boulder/sa, and makes testing
// significantly simpler.
// On success, the function returns a boolean which is true if the key is blocked.
type BlockedKeyCheckFunc func(ctx context.Context, keyHash []byte) (bool, error)
// KeyPolicy determines which types of key may be used with various boulder
// operations.
type KeyPolicy struct {
allowedKeys AllowedKeys
fermatRounds int
blockedCheck BlockedKeyCheckFunc
}
// NewPolicy returns a key policy based on the given configuration, with sane
// defaults. If the config's AllowedKeys is nil, the LetsEncryptCPS AllowedKeys
// is used. If the configured FermatRounds is 0, Fermat Factorization defaults to
// attempting 110 rounds.
func NewPolicy(config *Config, bkc BlockedKeyCheckFunc) (KeyPolicy, error) {
if config == nil {
config = &Config{}
}
kp := KeyPolicy{
blockedCheck: bkc,
}
if config.AllowedKeys == nil {
kp.allowedKeys = LetsEncryptCPS()
} else {
kp.allowedKeys = *config.AllowedKeys
}
if config.FermatRounds == 0 {
// The BRs require 100 rounds, so give ourselves a margin above that.
kp.fermatRounds = 110
} else if config.FermatRounds < 100 {
return KeyPolicy{}, fmt.Errorf("Fermat factorization rounds must be at least 100: %d", config.FermatRounds)
} else {
kp.fermatRounds = config.FermatRounds
}
return kp, nil
}
// GoodKey returns true if the key is acceptable for both TLS use and account
// key use (our requirements are the same for either one), according to basic
// strength and algorithm checking. GoodKey only supports pointers: *rsa.PublicKey
// and *ecdsa.PublicKey. It will reject non-pointer types.
// TODO: Support JSONWebKeys once go-jose migration is done.
func (policy *KeyPolicy) GoodKey(ctx context.Context, key crypto.PublicKey) error {
// Early rejection of unacceptable key types to guard subsequent checks.
switch t := key.(type) {
case *rsa.PublicKey, *ecdsa.PublicKey:
break
default:
return badKey("unsupported key type %T", t)
}
if policy.blockedCheck != nil {
digest, err := core.KeyDigest(key)
if err != nil {
return badKey("%w", err)
}
exists, err := policy.blockedCheck(ctx, digest[:])
if err != nil {
return err
} else if exists {
return badKey("public key is forbidden")
}
}
switch t := key.(type) {
case *rsa.PublicKey:
return policy.goodKeyRSA(t)
case *ecdsa.PublicKey:
return policy.goodKeyECDSA(t)
default:
return badKey("unsupported key type %T", key)
}
}
// GoodKeyECDSA determines if an ECDSA pubkey meets our requirements
func (policy *KeyPolicy) goodKeyECDSA(key *ecdsa.PublicKey) (err error) {
// Check the curve.
//
// The validity of the curve is an assumption for all following tests.
err = policy.goodCurve(key.Curve)
if err != nil {
return err
}
// Key validation routine adapted from NIST SP800-56A § 5.6.2.3.2.
// <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf>
//
// Assuming a prime field since a) we are only allowing such curves and b)
// crypto/elliptic only supports prime curves. Where this assumption
// simplifies the code below, it is explicitly stated and explained. If ever
// adapting this code to support non-prime curves, refer to NIST SP800-56A §
// 5.6.2.3.2 and adapt this code appropriately.
params := key.Params()
// SP800-56A § 5.6.2.3.2 Step 1.
// Partial check of the public key for an invalid range in the EC group:
// Verify that key is not the point at infinity O.
// This code assumes that the point at infinity is (0,0), which is the
// case for all supported curves.
if isPointAtInfinityNISTP(key.X, key.Y) {
return badKey("key x, y must not be the point at infinity")
}
// SP800-56A § 5.6.2.3.2 Step 2.
// "Verify that x_Q and y_Q are integers in the interval [0,p-1] in the
// case that q is an odd prime p, or that x_Q and y_Q are bit strings
// of length m bits in the case that q = 2**m."
//
// Prove prime field: ASSUMED.
// Prove q != 2: ASSUMED. (Curve parameter. No supported curve has q == 2.)
// Prime field && q != 2 => q is an odd prime p
// Therefore "verify that x, y are in [0, p-1]" satisfies step 2.
//
// Therefore verify that both x and y of the public key point have the unique
// correct representation of an element in the underlying field by verifying
// that x and y are integers in [0, p-1].
if key.X.Sign() < 0 || key.Y.Sign() < 0 {
return badKey("key x, y must not be negative")
}
if key.X.Cmp(params.P) >= 0 || key.Y.Cmp(params.P) >= 0 {
return badKey("key x, y must not exceed P-1")
}
// SP800-56A § 5.6.2.3.2 Step 3.
// "If q is an odd prime p, verify that (y_Q)**2 === (x_Q)***3 + a*x_Q + b (mod p).
// If q = 2**m, verify that (y_Q)**2 + (x_Q)*(y_Q) == (x_Q)**3 + a*(x_Q)*2 + b in
// the finite field of size 2**m.
// (Ensures that the public key is on the correct elliptic curve.)"
//
// q is an odd prime p: proven/assumed above.
// a = -3 for all supported curves.
//
// Therefore step 3 is satisfied simply by showing that
// y**2 === x**3 - 3*x + B (mod P).
//
// This proves that the public key is on the correct elliptic curve.
// But in practice, this test is provided by crypto/elliptic, so use that.
if !key.Curve.IsOnCurve(key.X, key.Y) {
return badKey("key point is not on the curve")
}
// SP800-56A § 5.6.2.3.2 Step 4.
// "Verify that n*Q == Ø.
// (Ensures that the public key has the correct order. Along with check 1,
// ensures that the public key is in the correct range in the correct EC
// subgroup, that is, it is in the correct EC subgroup and is not the
// identity element.)"
//
// Ensure that public key has the correct order:
// verify that n*Q = Ø.
//
// n*Q = Ø iff n*Q is the point at infinity (see step 1).
ox, oy := key.Curve.ScalarMult(key.X, key.Y, params.N.Bytes())
if !isPointAtInfinityNISTP(ox, oy) {
return badKey("public key does not have correct order")
}
// End of SP800-56A § 5.6.2.3.2 Public Key Validation Routine.
// Key is valid.
return nil
}
// Returns true iff the point (x,y) on NIST P-256, NIST P-384 or NIST P-521 is
// the point at infinity. These curves all have the same point at infinity
// (0,0). This function must ONLY be used on points on curves verified to have
// (0,0) as their point at infinity.
func isPointAtInfinityNISTP(x, y *big.Int) bool {
return x.Sign() == 0 && y.Sign() == 0
}
// GoodCurve determines if an elliptic curve meets our requirements.
func (policy *KeyPolicy) goodCurve(c elliptic.Curve) (err error) {
// Simply use a whitelist for now.
params := c.Params()
switch {
case policy.allowedKeys.ECDSAP256 && params == elliptic.P256().Params():
return nil
case policy.allowedKeys.ECDSAP384 && params == elliptic.P384().Params():
return nil
case policy.allowedKeys.ECDSAP521 && params == elliptic.P521().Params():
return nil
default:
return badKey("ECDSA curve %v not allowed", params.Name)
}
}
// GoodKeyRSA determines if a RSA pubkey meets our requirements
func (policy *KeyPolicy) goodKeyRSA(key *rsa.PublicKey) error {
modulus := key.N
err := policy.goodRSABitLen(key)
if err != nil {
return err
}
// Rather than support arbitrary exponents, which significantly increases
// the size of the key space we allow, we restrict E to the defacto standard
// RSA exponent 65537. There is no specific standards document that specifies
// 65537 as the 'best' exponent, but ITU X.509 Annex C suggests there are
// notable merits for using it if using a fixed exponent.
//
// The CABF Baseline Requirements state:
// The CA SHALL confirm that the value of the public exponent is an
// odd number equal to 3 or more. Additionally, the public exponent
// SHOULD be in the range between 2^16 + 1 and 2^256-1.
//
// By only allowing one exponent, which fits these constraints, we satisfy
// these requirements.
if key.E != 65537 {
return badKey("key exponent must be 65537")
}
// The modulus SHOULD also have the following characteristics: an odd
// number, not the power of a prime, and have no factors smaller than 752.
// TODO: We don't yet check for "power of a prime."
if checkSmallPrimes(modulus) {
return badKey("key divisible by small prime")
}
// Check for weak keys generated by Infineon hardware
// (see https://crocs.fi.muni.cz/public/papers/rsa_ccs17)
if rocacheck.IsWeak(key) {
return badKey("key generated by vulnerable Infineon-based hardware")
}
// Check if the key can be easily factored via Fermat's factorization method.
err = checkPrimeFactorsTooClose(modulus, policy.fermatRounds)
if err != nil {
return badKey("key generated with factors too close together: %w", err)
}
return nil
}
func (policy *KeyPolicy) goodRSABitLen(key *rsa.PublicKey) error {
// See comment on AllowedKeys above.
modulusBitLen := key.N.BitLen()
switch {
case modulusBitLen == 2048 && policy.allowedKeys.RSA2048:
return nil
case modulusBitLen == 3072 && policy.allowedKeys.RSA3072:
return nil
case modulusBitLen == 4096 && policy.allowedKeys.RSA4096:
return nil
default:
return badKey("key size not supported: %d", modulusBitLen)
}
}
// Returns true iff integer i is divisible by any of the primes in smallPrimes.
//
// Short circuits; execution time is dependent on i. Do not use this on secret
// values.
//
// Rather than checking each prime individually (invoking Mod on each),
// multiply the primes together and let GCD do our work for us: if the
// GCD between <key> and <product of primes> is not one, we know we have
// a bad key. This is substantially faster than checking each prime
// individually.
func checkSmallPrimes(i *big.Int) bool {
smallPrimesSingleton.Do(func() {
smallPrimesProduct = big.NewInt(1)
for _, prime := range smallPrimeInts {
smallPrimesProduct.Mul(smallPrimesProduct, big.NewInt(prime))
}
})
// When the GCD is 1, i and smallPrimesProduct are coprime, meaning they
// share no common factors. When the GCD is not one, it is the product of
// all common factors, meaning we've identified at least one small prime
// which invalidates i as a valid key.
var result big.Int
result.GCD(nil, nil, i, smallPrimesProduct)
return result.Cmp(big.NewInt(1)) != 0
}
// Returns an error if the modulus n is able to be factored into primes p and q
// via Fermat's factorization method. This method relies on the two primes being
// very close together, which means that they were almost certainly not picked
// independently from a uniform random distribution. Basically, if we can factor
// the key this easily, so can anyone else.
func checkPrimeFactorsTooClose(n *big.Int, rounds int) error {
// Pre-allocate some big numbers that we'll use a lot down below.
one := big.NewInt(1)
bb := new(big.Int)
// Any odd integer is equal to a difference of squares of integers:
// n = a^2 - b^2 = (a + b)(a - b)
// Any RSA public key modulus is equal to a product of two primes:
// n = pq
// Here we try to find values for a and b, since doing so also gives us the
// prime factors p = (a + b) and q = (a - b).
// We start with a close to the square root of the modulus n, to start with
// two candidate prime factors that are as close together as possible and
// work our way out from there. Specifically, we set a = ceil(sqrt(n)), the
// first integer greater than the square root of n. Unfortunately, big.Int's
// built-in square root function takes the floor, so we have to add one to get
// the ceil.
a := new(big.Int)
a.Sqrt(n).Add(a, one)
// We calculate b2 to see if it is a perfect square (i.e. b^2), and therefore
// b is an integer. Specifically, b2 = a^2 - n.
b2 := new(big.Int)
b2.Mul(a, a).Sub(b2, n)
for round := range rounds {
// To see if b2 is a perfect square, we take its square root, square that,
// and check to see if we got the same result back.
bb.Sqrt(b2).Mul(bb, bb)
if b2.Cmp(bb) == 0 {
// b2 is a perfect square, so we've found integer values of a and b,
// and can easily compute p and q as their sum and difference.
bb.Sqrt(bb)
p := new(big.Int).Add(a, bb)
q := new(big.Int).Sub(a, bb)
return fmt.Errorf("public modulus n = pq factored in %d rounds into p: %s and q: %s", round+1, p, q)
}
// Set up the next iteration by incrementing a by one and recalculating b2.
a.Add(a, one)
b2.Mul(a, a).Sub(b2, n)
}
return nil
}