426 lines
16 KiB
Go
426 lines
16 KiB
Go
package goodkey
|
||
|
||
import (
|
||
"context"
|
||
"crypto"
|
||
"crypto/ecdsa"
|
||
"crypto/elliptic"
|
||
"crypto/rsa"
|
||
"errors"
|
||
"fmt"
|
||
"math/big"
|
||
"sync"
|
||
|
||
"github.com/letsencrypt/boulder/core"
|
||
|
||
"github.com/titanous/rocacheck"
|
||
)
|
||
|
||
// To generate, run: primes 2 752 | tr '\n' ,
|
||
var smallPrimeInts = []int64{
|
||
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
|
||
53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,
|
||
109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,
|
||
173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
|
||
233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283,
|
||
293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359,
|
||
367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431,
|
||
433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491,
|
||
499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571,
|
||
577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641,
|
||
643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709,
|
||
719, 727, 733, 739, 743, 751,
|
||
}
|
||
|
||
// singleton defines the object of a Singleton pattern
|
||
var (
|
||
smallPrimesSingleton sync.Once
|
||
smallPrimesProduct *big.Int
|
||
)
|
||
|
||
type Config struct {
|
||
// AllowedKeys enables or disables specific key algorithms and sizes. If
|
||
// nil, defaults to just those keys allowed by the Let's Encrypt CPS.
|
||
AllowedKeys *AllowedKeys
|
||
// FermatRounds is an integer number of rounds of Fermat's factorization
|
||
// method that should be performed to attempt to detect keys whose modulus can
|
||
// be trivially factored because the two factors are very close to each other.
|
||
// If this config value is empty or 0, it will default to 110 rounds.
|
||
FermatRounds int
|
||
}
|
||
|
||
// AllowedKeys is a map of six specific key algorithm and size combinations to
|
||
// booleans indicating whether keys of that type are considered good.
|
||
type AllowedKeys struct {
|
||
// Baseline Requirements, Section 6.1.5 requires key size >= 2048 and a multiple
|
||
// of 8 bits: https://github.com/cabforum/servercert/blob/main/docs/BR.md#615-key-sizes
|
||
// Baseline Requirements, Section 6.1.1.3 requires that we reject any keys which
|
||
// have a known method to easily compute their private key, such as Debian Weak
|
||
// Keys. Our enforcement mechanism relies on enumerating all Debian Weak Keys at
|
||
// common key sizes, so we restrict all issuance to those common key sizes.
|
||
RSA2048 bool
|
||
RSA3072 bool
|
||
RSA4096 bool
|
||
// Baseline Requirements, Section 6.1.5 requires that ECDSA keys be valid
|
||
// points on the NIST P-256, P-384, or P-521 elliptic curves.
|
||
ECDSAP256 bool
|
||
ECDSAP384 bool
|
||
ECDSAP521 bool
|
||
}
|
||
|
||
// LetsEncryptCPS encodes the five key algorithms and sizes allowed by the Let's
|
||
// Encrypt CPS CV-SSL Subscriber Certificate Profile: RSA 2048, RSA 3076, RSA
|
||
// 4096, ECDSA 256 and ECDSA P384.
|
||
// https://github.com/letsencrypt/cp-cps/blob/main/CP-CPS.md#dv-ssl-subscriber-certificate
|
||
// If this is ever changed, the CP/CPS MUST be changed first.
|
||
func LetsEncryptCPS() AllowedKeys {
|
||
return AllowedKeys{
|
||
RSA2048: true,
|
||
RSA3072: true,
|
||
RSA4096: true,
|
||
ECDSAP256: true,
|
||
ECDSAP384: true,
|
||
}
|
||
}
|
||
|
||
// ErrBadKey represents an error with a key. It is distinct from the various
|
||
// ways in which an ACME request can have an erroneous key (BadPublicKeyError,
|
||
// BadCSRError) because this library is used to check both JWS signing keys and
|
||
// keys in CSRs.
|
||
var ErrBadKey = errors.New("")
|
||
|
||
func badKey(msg string, args ...interface{}) error {
|
||
return fmt.Errorf("%w%s", ErrBadKey, fmt.Errorf(msg, args...))
|
||
}
|
||
|
||
// BlockedKeyCheckFunc is used to pass in the sa.BlockedKey functionality to KeyPolicy,
|
||
// rather than storing a full sa.SQLStorageAuthority. This allows external
|
||
// users who don’t want to import all of boulder/sa, and makes testing
|
||
// significantly simpler.
|
||
// On success, the function returns a boolean which is true if the key is blocked.
|
||
type BlockedKeyCheckFunc func(ctx context.Context, keyHash []byte) (bool, error)
|
||
|
||
// KeyPolicy determines which types of key may be used with various boulder
|
||
// operations.
|
||
type KeyPolicy struct {
|
||
allowedKeys AllowedKeys
|
||
fermatRounds int
|
||
blockedCheck BlockedKeyCheckFunc
|
||
}
|
||
|
||
// NewPolicy returns a key policy based on the given configuration, with sane
|
||
// defaults. If the config's AllowedKeys is nil, the LetsEncryptCPS AllowedKeys
|
||
// is used. If the configured FermatRounds is 0, Fermat Factorization defaults to
|
||
// attempting 110 rounds.
|
||
func NewPolicy(config *Config, bkc BlockedKeyCheckFunc) (KeyPolicy, error) {
|
||
if config == nil {
|
||
config = &Config{}
|
||
}
|
||
kp := KeyPolicy{
|
||
blockedCheck: bkc,
|
||
}
|
||
if config.AllowedKeys == nil {
|
||
kp.allowedKeys = LetsEncryptCPS()
|
||
} else {
|
||
kp.allowedKeys = *config.AllowedKeys
|
||
}
|
||
if config.FermatRounds == 0 {
|
||
// The BRs require 100 rounds, so give ourselves a margin above that.
|
||
kp.fermatRounds = 110
|
||
} else if config.FermatRounds < 100 {
|
||
return KeyPolicy{}, fmt.Errorf("Fermat factorization rounds must be at least 100: %d", config.FermatRounds)
|
||
} else {
|
||
kp.fermatRounds = config.FermatRounds
|
||
}
|
||
return kp, nil
|
||
}
|
||
|
||
// GoodKey returns true if the key is acceptable for both TLS use and account
|
||
// key use (our requirements are the same for either one), according to basic
|
||
// strength and algorithm checking. GoodKey only supports pointers: *rsa.PublicKey
|
||
// and *ecdsa.PublicKey. It will reject non-pointer types.
|
||
// TODO: Support JSONWebKeys once go-jose migration is done.
|
||
func (policy *KeyPolicy) GoodKey(ctx context.Context, key crypto.PublicKey) error {
|
||
// Early rejection of unacceptable key types to guard subsequent checks.
|
||
switch t := key.(type) {
|
||
case *rsa.PublicKey, *ecdsa.PublicKey:
|
||
break
|
||
default:
|
||
return badKey("unsupported key type %T", t)
|
||
}
|
||
if policy.blockedCheck != nil {
|
||
digest, err := core.KeyDigest(key)
|
||
if err != nil {
|
||
return badKey("%w", err)
|
||
}
|
||
exists, err := policy.blockedCheck(ctx, digest[:])
|
||
if err != nil {
|
||
return err
|
||
} else if exists {
|
||
return badKey("public key is forbidden")
|
||
}
|
||
}
|
||
switch t := key.(type) {
|
||
case *rsa.PublicKey:
|
||
return policy.goodKeyRSA(t)
|
||
case *ecdsa.PublicKey:
|
||
return policy.goodKeyECDSA(t)
|
||
default:
|
||
return badKey("unsupported key type %T", key)
|
||
}
|
||
}
|
||
|
||
// GoodKeyECDSA determines if an ECDSA pubkey meets our requirements
|
||
func (policy *KeyPolicy) goodKeyECDSA(key *ecdsa.PublicKey) (err error) {
|
||
// Check the curve.
|
||
//
|
||
// The validity of the curve is an assumption for all following tests.
|
||
err = policy.goodCurve(key.Curve)
|
||
if err != nil {
|
||
return err
|
||
}
|
||
|
||
// Key validation routine adapted from NIST SP800-56A § 5.6.2.3.2.
|
||
// <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf>
|
||
//
|
||
// Assuming a prime field since a) we are only allowing such curves and b)
|
||
// crypto/elliptic only supports prime curves. Where this assumption
|
||
// simplifies the code below, it is explicitly stated and explained. If ever
|
||
// adapting this code to support non-prime curves, refer to NIST SP800-56A §
|
||
// 5.6.2.3.2 and adapt this code appropriately.
|
||
params := key.Params()
|
||
|
||
// SP800-56A § 5.6.2.3.2 Step 1.
|
||
// Partial check of the public key for an invalid range in the EC group:
|
||
// Verify that key is not the point at infinity O.
|
||
// This code assumes that the point at infinity is (0,0), which is the
|
||
// case for all supported curves.
|
||
if isPointAtInfinityNISTP(key.X, key.Y) {
|
||
return badKey("key x, y must not be the point at infinity")
|
||
}
|
||
|
||
// SP800-56A § 5.6.2.3.2 Step 2.
|
||
// "Verify that x_Q and y_Q are integers in the interval [0,p-1] in the
|
||
// case that q is an odd prime p, or that x_Q and y_Q are bit strings
|
||
// of length m bits in the case that q = 2**m."
|
||
//
|
||
// Prove prime field: ASSUMED.
|
||
// Prove q != 2: ASSUMED. (Curve parameter. No supported curve has q == 2.)
|
||
// Prime field && q != 2 => q is an odd prime p
|
||
// Therefore "verify that x, y are in [0, p-1]" satisfies step 2.
|
||
//
|
||
// Therefore verify that both x and y of the public key point have the unique
|
||
// correct representation of an element in the underlying field by verifying
|
||
// that x and y are integers in [0, p-1].
|
||
if key.X.Sign() < 0 || key.Y.Sign() < 0 {
|
||
return badKey("key x, y must not be negative")
|
||
}
|
||
|
||
if key.X.Cmp(params.P) >= 0 || key.Y.Cmp(params.P) >= 0 {
|
||
return badKey("key x, y must not exceed P-1")
|
||
}
|
||
|
||
// SP800-56A § 5.6.2.3.2 Step 3.
|
||
// "If q is an odd prime p, verify that (y_Q)**2 === (x_Q)***3 + a*x_Q + b (mod p).
|
||
// If q = 2**m, verify that (y_Q)**2 + (x_Q)*(y_Q) == (x_Q)**3 + a*(x_Q)*2 + b in
|
||
// the finite field of size 2**m.
|
||
// (Ensures that the public key is on the correct elliptic curve.)"
|
||
//
|
||
// q is an odd prime p: proven/assumed above.
|
||
// a = -3 for all supported curves.
|
||
//
|
||
// Therefore step 3 is satisfied simply by showing that
|
||
// y**2 === x**3 - 3*x + B (mod P).
|
||
//
|
||
// This proves that the public key is on the correct elliptic curve.
|
||
// But in practice, this test is provided by crypto/elliptic, so use that.
|
||
if !key.Curve.IsOnCurve(key.X, key.Y) {
|
||
return badKey("key point is not on the curve")
|
||
}
|
||
|
||
// SP800-56A § 5.6.2.3.2 Step 4.
|
||
// "Verify that n*Q == Ø.
|
||
// (Ensures that the public key has the correct order. Along with check 1,
|
||
// ensures that the public key is in the correct range in the correct EC
|
||
// subgroup, that is, it is in the correct EC subgroup and is not the
|
||
// identity element.)"
|
||
//
|
||
// Ensure that public key has the correct order:
|
||
// verify that n*Q = Ø.
|
||
//
|
||
// n*Q = Ø iff n*Q is the point at infinity (see step 1).
|
||
ox, oy := key.Curve.ScalarMult(key.X, key.Y, params.N.Bytes())
|
||
if !isPointAtInfinityNISTP(ox, oy) {
|
||
return badKey("public key does not have correct order")
|
||
}
|
||
|
||
// End of SP800-56A § 5.6.2.3.2 Public Key Validation Routine.
|
||
// Key is valid.
|
||
return nil
|
||
}
|
||
|
||
// Returns true iff the point (x,y) on NIST P-256, NIST P-384 or NIST P-521 is
|
||
// the point at infinity. These curves all have the same point at infinity
|
||
// (0,0). This function must ONLY be used on points on curves verified to have
|
||
// (0,0) as their point at infinity.
|
||
func isPointAtInfinityNISTP(x, y *big.Int) bool {
|
||
return x.Sign() == 0 && y.Sign() == 0
|
||
}
|
||
|
||
// GoodCurve determines if an elliptic curve meets our requirements.
|
||
func (policy *KeyPolicy) goodCurve(c elliptic.Curve) (err error) {
|
||
// Simply use a whitelist for now.
|
||
params := c.Params()
|
||
switch {
|
||
case policy.allowedKeys.ECDSAP256 && params == elliptic.P256().Params():
|
||
return nil
|
||
case policy.allowedKeys.ECDSAP384 && params == elliptic.P384().Params():
|
||
return nil
|
||
case policy.allowedKeys.ECDSAP521 && params == elliptic.P521().Params():
|
||
return nil
|
||
default:
|
||
return badKey("ECDSA curve %v not allowed", params.Name)
|
||
}
|
||
}
|
||
|
||
// GoodKeyRSA determines if a RSA pubkey meets our requirements
|
||
func (policy *KeyPolicy) goodKeyRSA(key *rsa.PublicKey) error {
|
||
modulus := key.N
|
||
|
||
err := policy.goodRSABitLen(key)
|
||
if err != nil {
|
||
return err
|
||
}
|
||
|
||
// Rather than support arbitrary exponents, which significantly increases
|
||
// the size of the key space we allow, we restrict E to the defacto standard
|
||
// RSA exponent 65537. There is no specific standards document that specifies
|
||
// 65537 as the 'best' exponent, but ITU X.509 Annex C suggests there are
|
||
// notable merits for using it if using a fixed exponent.
|
||
//
|
||
// The CABF Baseline Requirements state:
|
||
// The CA SHALL confirm that the value of the public exponent is an
|
||
// odd number equal to 3 or more. Additionally, the public exponent
|
||
// SHOULD be in the range between 2^16 + 1 and 2^256-1.
|
||
//
|
||
// By only allowing one exponent, which fits these constraints, we satisfy
|
||
// these requirements.
|
||
if key.E != 65537 {
|
||
return badKey("key exponent must be 65537")
|
||
}
|
||
|
||
// The modulus SHOULD also have the following characteristics: an odd
|
||
// number, not the power of a prime, and have no factors smaller than 752.
|
||
// TODO: We don't yet check for "power of a prime."
|
||
if checkSmallPrimes(modulus) {
|
||
return badKey("key divisible by small prime")
|
||
}
|
||
// Check for weak keys generated by Infineon hardware
|
||
// (see https://crocs.fi.muni.cz/public/papers/rsa_ccs17)
|
||
if rocacheck.IsWeak(key) {
|
||
return badKey("key generated by vulnerable Infineon-based hardware")
|
||
}
|
||
|
||
// Check if the key can be easily factored via Fermat's factorization method.
|
||
err = checkPrimeFactorsTooClose(modulus, policy.fermatRounds)
|
||
if err != nil {
|
||
return badKey("key generated with factors too close together: %w", err)
|
||
}
|
||
|
||
return nil
|
||
}
|
||
|
||
func (policy *KeyPolicy) goodRSABitLen(key *rsa.PublicKey) error {
|
||
// See comment on AllowedKeys above.
|
||
modulusBitLen := key.N.BitLen()
|
||
switch {
|
||
case modulusBitLen == 2048 && policy.allowedKeys.RSA2048:
|
||
return nil
|
||
case modulusBitLen == 3072 && policy.allowedKeys.RSA3072:
|
||
return nil
|
||
case modulusBitLen == 4096 && policy.allowedKeys.RSA4096:
|
||
return nil
|
||
default:
|
||
return badKey("key size not supported: %d", modulusBitLen)
|
||
}
|
||
}
|
||
|
||
// Returns true iff integer i is divisible by any of the primes in smallPrimes.
|
||
//
|
||
// Short circuits; execution time is dependent on i. Do not use this on secret
|
||
// values.
|
||
//
|
||
// Rather than checking each prime individually (invoking Mod on each),
|
||
// multiply the primes together and let GCD do our work for us: if the
|
||
// GCD between <key> and <product of primes> is not one, we know we have
|
||
// a bad key. This is substantially faster than checking each prime
|
||
// individually.
|
||
func checkSmallPrimes(i *big.Int) bool {
|
||
smallPrimesSingleton.Do(func() {
|
||
smallPrimesProduct = big.NewInt(1)
|
||
for _, prime := range smallPrimeInts {
|
||
smallPrimesProduct.Mul(smallPrimesProduct, big.NewInt(prime))
|
||
}
|
||
})
|
||
|
||
// When the GCD is 1, i and smallPrimesProduct are coprime, meaning they
|
||
// share no common factors. When the GCD is not one, it is the product of
|
||
// all common factors, meaning we've identified at least one small prime
|
||
// which invalidates i as a valid key.
|
||
|
||
var result big.Int
|
||
result.GCD(nil, nil, i, smallPrimesProduct)
|
||
return result.Cmp(big.NewInt(1)) != 0
|
||
}
|
||
|
||
// Returns an error if the modulus n is able to be factored into primes p and q
|
||
// via Fermat's factorization method. This method relies on the two primes being
|
||
// very close together, which means that they were almost certainly not picked
|
||
// independently from a uniform random distribution. Basically, if we can factor
|
||
// the key this easily, so can anyone else.
|
||
func checkPrimeFactorsTooClose(n *big.Int, rounds int) error {
|
||
// Pre-allocate some big numbers that we'll use a lot down below.
|
||
one := big.NewInt(1)
|
||
bb := new(big.Int)
|
||
|
||
// Any odd integer is equal to a difference of squares of integers:
|
||
// n = a^2 - b^2 = (a + b)(a - b)
|
||
// Any RSA public key modulus is equal to a product of two primes:
|
||
// n = pq
|
||
// Here we try to find values for a and b, since doing so also gives us the
|
||
// prime factors p = (a + b) and q = (a - b).
|
||
|
||
// We start with a close to the square root of the modulus n, to start with
|
||
// two candidate prime factors that are as close together as possible and
|
||
// work our way out from there. Specifically, we set a = ceil(sqrt(n)), the
|
||
// first integer greater than the square root of n. Unfortunately, big.Int's
|
||
// built-in square root function takes the floor, so we have to add one to get
|
||
// the ceil.
|
||
a := new(big.Int)
|
||
a.Sqrt(n).Add(a, one)
|
||
|
||
// We calculate b2 to see if it is a perfect square (i.e. b^2), and therefore
|
||
// b is an integer. Specifically, b2 = a^2 - n.
|
||
b2 := new(big.Int)
|
||
b2.Mul(a, a).Sub(b2, n)
|
||
|
||
for round := range rounds {
|
||
// To see if b2 is a perfect square, we take its square root, square that,
|
||
// and check to see if we got the same result back.
|
||
bb.Sqrt(b2).Mul(bb, bb)
|
||
if b2.Cmp(bb) == 0 {
|
||
// b2 is a perfect square, so we've found integer values of a and b,
|
||
// and can easily compute p and q as their sum and difference.
|
||
bb.Sqrt(bb)
|
||
p := new(big.Int).Add(a, bb)
|
||
q := new(big.Int).Sub(a, bb)
|
||
return fmt.Errorf("public modulus n = pq factored in %d rounds into p: %s and q: %s", round+1, p, q)
|
||
}
|
||
|
||
// Set up the next iteration by incrementing a by one and recalculating b2.
|
||
a.Add(a, one)
|
||
b2.Mul(a, a).Sub(b2, n)
|
||
}
|
||
return nil
|
||
}
|