160 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			160 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Go
		
	
	
	
| // Copyright 2017 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| // Modified by Boulder to provide a load-shedding mechanism.
 | |
| 
 | |
| // Package semaphore provides a weighted semaphore implementation.
 | |
| package semaphore // import "golang.org/x/sync/semaphore"
 | |
| 
 | |
| import (
 | |
| 	"container/list"
 | |
| 	"context"
 | |
| 	"errors"
 | |
| 	"sync"
 | |
| )
 | |
| 
 | |
| type waiter struct {
 | |
| 	n     int64
 | |
| 	ready chan<- struct{} // Closed when semaphore acquired.
 | |
| }
 | |
| 
 | |
| // ErrMaxWaiters is returned when Acquire is called, but there are more than
 | |
| // maxWaiters waiters.
 | |
| var ErrMaxWaiters = errors.New("too many waiters")
 | |
| 
 | |
| // NewWeighted creates a new weighted semaphore with the given
 | |
| // maximum combined weight for concurrent access.
 | |
| // maxWaiters provides a limit such that calls to Acquire
 | |
| // will immediately error if the number of waiters is that high.
 | |
| // A maxWaiters of zero means no limit.
 | |
| func NewWeighted(n int64, maxWaiters int) *Weighted {
 | |
| 	w := &Weighted{size: n, maxWaiters: maxWaiters}
 | |
| 	return w
 | |
| }
 | |
| 
 | |
| // Weighted provides a way to bound concurrent access to a resource.
 | |
| // The callers can request access with a given weight.
 | |
| type Weighted struct {
 | |
| 	size       int64
 | |
| 	cur        int64
 | |
| 	mu         sync.Mutex
 | |
| 	waiters    list.List
 | |
| 	maxWaiters int
 | |
| }
 | |
| 
 | |
| // Acquire acquires the semaphore with a weight of n, blocking until resources
 | |
| // are available or ctx is done. On success, returns nil. On failure, returns
 | |
| // ctx.Err() and leaves the semaphore unchanged.
 | |
| //
 | |
| // If ctx is already done, Acquire may still succeed without blocking.
 | |
| //
 | |
| // If there are maxWaiters waiters, Acquire will return an error immediately.
 | |
| func (s *Weighted) Acquire(ctx context.Context, n int64) error {
 | |
| 	s.mu.Lock()
 | |
| 	if s.size-s.cur >= n && s.waiters.Len() == 0 {
 | |
| 		s.cur += n
 | |
| 		s.mu.Unlock()
 | |
| 		return nil
 | |
| 	}
 | |
| 
 | |
| 	if n > s.size {
 | |
| 		// Don't make other Acquire calls block on one that's doomed to fail.
 | |
| 		s.mu.Unlock()
 | |
| 		<-ctx.Done()
 | |
| 		return ctx.Err()
 | |
| 	}
 | |
| 
 | |
| 	if s.maxWaiters > 0 && s.waiters.Len() >= s.maxWaiters {
 | |
| 		s.mu.Unlock()
 | |
| 		return ErrMaxWaiters
 | |
| 	}
 | |
| 
 | |
| 	ready := make(chan struct{})
 | |
| 	w := waiter{n: n, ready: ready}
 | |
| 	elem := s.waiters.PushBack(w)
 | |
| 	s.mu.Unlock()
 | |
| 
 | |
| 	select {
 | |
| 	case <-ctx.Done():
 | |
| 		err := ctx.Err()
 | |
| 		s.mu.Lock()
 | |
| 		select {
 | |
| 		case <-ready:
 | |
| 			// Acquired the semaphore after we were canceled.  Rather than trying to
 | |
| 			// fix up the queue, just pretend we didn't notice the cancellation.
 | |
| 			err = nil
 | |
| 		default:
 | |
| 			isFront := s.waiters.Front() == elem
 | |
| 			s.waiters.Remove(elem)
 | |
| 			// If we're at the front and there're extra tokens left, notify other waiters.
 | |
| 			if isFront && s.size > s.cur {
 | |
| 				s.notifyWaiters()
 | |
| 			}
 | |
| 		}
 | |
| 		s.mu.Unlock()
 | |
| 		return err
 | |
| 
 | |
| 	case <-ready:
 | |
| 		return nil
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // TryAcquire acquires the semaphore with a weight of n without blocking.
 | |
| // On success, returns true. On failure, returns false and leaves the semaphore unchanged.
 | |
| func (s *Weighted) TryAcquire(n int64) bool {
 | |
| 	s.mu.Lock()
 | |
| 	success := s.size-s.cur >= n && s.waiters.Len() == 0
 | |
| 	if success {
 | |
| 		s.cur += n
 | |
| 	}
 | |
| 	s.mu.Unlock()
 | |
| 	return success
 | |
| }
 | |
| 
 | |
| // Release releases the semaphore with a weight of n.
 | |
| func (s *Weighted) Release(n int64) {
 | |
| 	s.mu.Lock()
 | |
| 	s.cur -= n
 | |
| 	if s.cur < 0 {
 | |
| 		s.mu.Unlock()
 | |
| 		panic("semaphore: released more than held")
 | |
| 	}
 | |
| 	s.notifyWaiters()
 | |
| 	s.mu.Unlock()
 | |
| }
 | |
| 
 | |
| func (s *Weighted) NumWaiters() int {
 | |
| 	s.mu.Lock()
 | |
| 	defer s.mu.Unlock()
 | |
| 	return s.waiters.Len()
 | |
| }
 | |
| 
 | |
| func (s *Weighted) notifyWaiters() {
 | |
| 	for {
 | |
| 		next := s.waiters.Front()
 | |
| 		if next == nil {
 | |
| 			break // No more waiters blocked.
 | |
| 		}
 | |
| 
 | |
| 		w := next.Value.(waiter)
 | |
| 		if s.size-s.cur < w.n {
 | |
| 			// Not enough tokens for the next waiter.  We could keep going (to try to
 | |
| 			// find a waiter with a smaller request), but under load that could cause
 | |
| 			// starvation for large requests; instead, we leave all remaining waiters
 | |
| 			// blocked.
 | |
| 			//
 | |
| 			// Consider a semaphore used as a read-write lock, with N tokens, N
 | |
| 			// readers, and one writer.  Each reader can Acquire(1) to obtain a read
 | |
| 			// lock.  The writer can Acquire(N) to obtain a write lock, excluding all
 | |
| 			// of the readers.  If we allow the readers to jump ahead in the queue,
 | |
| 			// the writer will starve — there is always one token available for every
 | |
| 			// reader.
 | |
| 			break
 | |
| 		}
 | |
| 
 | |
| 		s.cur += w.n
 | |
| 		s.waiters.Remove(next)
 | |
| 		close(w.ready)
 | |
| 	}
 | |
| }
 |