boulder/ca/ca.go

672 lines
25 KiB
Go

package ca
import (
"bytes"
"context"
"crypto"
"crypto/rand"
"crypto/sha256"
"crypto/x509"
"crypto/x509/pkix"
"encoding/asn1"
"encoding/gob"
"encoding/hex"
"errors"
"fmt"
"math/big"
mrand "math/rand/v2"
"strings"
"time"
ct "github.com/google/certificate-transparency-go"
cttls "github.com/google/certificate-transparency-go/tls"
"github.com/jmhodges/clock"
"github.com/miekg/pkcs11"
"github.com/prometheus/client_golang/prometheus"
"golang.org/x/crypto/cryptobyte"
cryptobyte_asn1 "golang.org/x/crypto/cryptobyte/asn1"
"golang.org/x/crypto/ocsp"
"google.golang.org/protobuf/types/known/timestamppb"
capb "github.com/letsencrypt/boulder/ca/proto"
"github.com/letsencrypt/boulder/core"
corepb "github.com/letsencrypt/boulder/core/proto"
csrlib "github.com/letsencrypt/boulder/csr"
berrors "github.com/letsencrypt/boulder/errors"
"github.com/letsencrypt/boulder/goodkey"
"github.com/letsencrypt/boulder/issuance"
"github.com/letsencrypt/boulder/linter"
blog "github.com/letsencrypt/boulder/log"
sapb "github.com/letsencrypt/boulder/sa/proto"
)
type certificateType string
const (
precertType = certificateType("precertificate")
certType = certificateType("certificate")
)
// Two maps of keys to Issuers. Lookup by PublicKeyAlgorithm is useful for
// determining the set of issuers which can sign a given (pre)cert, based on its
// PublicKeyAlgorithm. Lookup by NameID is useful for looking up a specific
// issuer based on the issuer of a given (pre)certificate.
type issuerMaps struct {
byAlg map[x509.PublicKeyAlgorithm][]*issuance.Issuer
byNameID map[issuance.NameID]*issuance.Issuer
}
type certProfileWithID struct {
// name is a human readable name used to refer to the certificate profile.
name string
// hash is SHA256 sum over every exported field of an issuance.ProfileConfig
// used to generate the embedded *issuance.Profile.
hash [32]byte
profile *issuance.Profile
}
// certProfilesMaps allows looking up the human-readable name of a certificate
// profile to retrieve the actual profile. The default profile to be used is
// stored alongside the maps.
type certProfilesMaps struct {
// The name of the profile that will be selected if no explicit profile name
// is provided via gRPC.
defaultName string
profileByHash map[[32]byte]*certProfileWithID
profileByName map[string]*certProfileWithID
}
// caMetrics holds various metrics which are shared between caImpl, ocspImpl,
// and crlImpl.
type caMetrics struct {
signatureCount *prometheus.CounterVec
signErrorCount *prometheus.CounterVec
lintErrorCount prometheus.Counter
}
func NewCAMetrics(stats prometheus.Registerer) *caMetrics {
signatureCount := prometheus.NewCounterVec(
prometheus.CounterOpts{
Name: "signatures",
Help: "Number of signatures",
},
[]string{"purpose", "issuer"})
stats.MustRegister(signatureCount)
signErrorCount := prometheus.NewCounterVec(prometheus.CounterOpts{
Name: "signature_errors",
Help: "A counter of signature errors labelled by error type",
}, []string{"type"})
stats.MustRegister(signErrorCount)
lintErrorCount := prometheus.NewCounter(
prometheus.CounterOpts{
Name: "lint_errors",
Help: "Number of issuances that were halted by linting errors",
})
stats.MustRegister(lintErrorCount)
return &caMetrics{signatureCount, signErrorCount, lintErrorCount}
}
func (m *caMetrics) noteSignError(err error) {
var pkcs11Error pkcs11.Error
if errors.As(err, &pkcs11Error) {
m.signErrorCount.WithLabelValues("HSM").Inc()
}
}
// certificateAuthorityImpl represents a CA that signs certificates.
// It can sign OCSP responses as well, but only via delegation to an ocspImpl.
type certificateAuthorityImpl struct {
capb.UnsafeCertificateAuthorityServer
sa sapb.StorageAuthorityCertificateClient
pa core.PolicyAuthority
issuers issuerMaps
certProfiles certProfilesMaps
prefix int // Prepended to the serial number
maxNames int
keyPolicy goodkey.KeyPolicy
clk clock.Clock
log blog.Logger
metrics *caMetrics
}
var _ capb.CertificateAuthorityServer = (*certificateAuthorityImpl)(nil)
// makeIssuerMaps processes a list of issuers into a set of maps for easy
// lookup either by key algorithm (useful for picking an issuer for a precert)
// or by unique ID (useful for final certs, OCSP, and CRLs). If two issuers with
// the same unique ID are encountered, an error is returned.
func makeIssuerMaps(issuers []*issuance.Issuer) (issuerMaps, error) {
issuersByAlg := make(map[x509.PublicKeyAlgorithm][]*issuance.Issuer, 2)
issuersByNameID := make(map[issuance.NameID]*issuance.Issuer, len(issuers))
for _, issuer := range issuers {
if _, found := issuersByNameID[issuer.NameID()]; found {
return issuerMaps{}, fmt.Errorf("two issuers with same NameID %d (%s) configured", issuer.NameID(), issuer.Name())
}
issuersByNameID[issuer.NameID()] = issuer
if issuer.IsActive() {
issuersByAlg[issuer.KeyType()] = append(issuersByAlg[issuer.KeyType()], issuer)
}
}
if i, ok := issuersByAlg[x509.ECDSA]; !ok || len(i) == 0 {
return issuerMaps{}, errors.New("no ECDSA issuers configured")
}
if i, ok := issuersByAlg[x509.RSA]; !ok || len(i) == 0 {
return issuerMaps{}, errors.New("no RSA issuers configured")
}
return issuerMaps{issuersByAlg, issuersByNameID}, nil
}
// makeCertificateProfilesMap processes a set of named certificate issuance
// profile configs into a two pre-computed maps: 1) a human-readable name to the
// profile and 2) a unique hash over contents of the profile to the profile
// itself. It returns the maps or an error if a duplicate name or hash is found.
//
// The unique hash is used in the case of
// - RA instructs CA1 to issue a precertificate
// - CA1 returns the precertificate DER bytes and profile hash to the RA
// - RA instructs CA2 to issue a final certificate, but CA2 does not contain a
// profile corresponding to that hash and an issuance is prevented.
func makeCertificateProfilesMap(defaultName string, profiles map[string]*issuance.ProfileConfig) (certProfilesMaps, error) {
if len(profiles) <= 0 {
return certProfilesMaps{}, fmt.Errorf("must pass at least one certificate profile")
}
// Check that a profile exists with the configured default profile name.
_, ok := profiles[defaultName]
if !ok {
return certProfilesMaps{}, fmt.Errorf("defaultCertificateProfileName:\"%s\" was configured, but a profile object was not found for that name", defaultName)
}
profilesByName := make(map[string]*certProfileWithID, len(profiles))
profilesByHash := make(map[[32]byte]*certProfileWithID, len(profiles))
for name, profileConfig := range profiles {
profile, err := issuance.NewProfile(profileConfig)
if err != nil {
return certProfilesMaps{}, err
}
// gob can only encode exported fields, of which an issuance.Profile has
// none. However, since we're already in a loop iteration having access
// to the issuance.ProfileConfig used to generate the issuance.Profile,
// we'll generate the hash from that.
var encodedProfile bytes.Buffer
enc := gob.NewEncoder(&encodedProfile)
err = enc.Encode(profileConfig)
if err != nil {
return certProfilesMaps{}, err
}
if len(encodedProfile.Bytes()) <= 0 {
return certProfilesMaps{}, fmt.Errorf("certificate profile encoding returned 0 bytes")
}
hash := sha256.Sum256(encodedProfile.Bytes())
withID := certProfileWithID{
name: name,
hash: hash,
profile: profile,
}
profilesByName[name] = &withID
_, found := profilesByHash[hash]
if found {
return certProfilesMaps{}, fmt.Errorf("duplicate certificate profile hash %d", hash)
}
profilesByHash[hash] = &withID
}
return certProfilesMaps{defaultName, profilesByHash, profilesByName}, nil
}
// NewCertificateAuthorityImpl creates a CA instance that can sign certificates
// from any number of issuance.Issuers according to their profiles, and can sign
// OCSP (via delegation to an ocspImpl and its issuers).
func NewCertificateAuthorityImpl(
sa sapb.StorageAuthorityCertificateClient,
pa core.PolicyAuthority,
boulderIssuers []*issuance.Issuer,
defaultCertProfileName string,
certificateProfiles map[string]*issuance.ProfileConfig,
serialPrefix int,
maxNames int,
keyPolicy goodkey.KeyPolicy,
logger blog.Logger,
metrics *caMetrics,
clk clock.Clock,
) (*certificateAuthorityImpl, error) {
var ca *certificateAuthorityImpl
var err error
if serialPrefix < 1 || serialPrefix > 127 {
err = errors.New("serial prefix must be between 1 and 127")
return nil, err
}
if len(boulderIssuers) == 0 {
return nil, errors.New("must have at least one issuer")
}
certProfiles, err := makeCertificateProfilesMap(defaultCertProfileName, certificateProfiles)
if err != nil {
return nil, err
}
issuers, err := makeIssuerMaps(boulderIssuers)
if err != nil {
return nil, err
}
ca = &certificateAuthorityImpl{
sa: sa,
pa: pa,
issuers: issuers,
certProfiles: certProfiles,
prefix: serialPrefix,
maxNames: maxNames,
keyPolicy: keyPolicy,
log: logger,
metrics: metrics,
clk: clk,
}
return ca, nil
}
var ocspStatusToCode = map[string]int{
"good": ocsp.Good,
"revoked": ocsp.Revoked,
"unknown": ocsp.Unknown,
}
// IssuePrecertificate is the first step in the [issuance cycle]. It allocates and stores a serial number,
// selects a certificate profile, generates and stores a linting certificate, sets the serial's status to
// "wait", signs and stores a precertificate, updates the serial's status to "good", then returns the
// precertificate.
//
// Subsequent final issuance based on this precertificate must happen at most once, and must use the same
// certificate profile. The certificate profile is identified by a hash to ensure an exact match even if
// the configuration for a specific profile _name_ changes.
//
// [issuance cycle]: https://github.com/letsencrypt/boulder/blob/main/docs/ISSUANCE-CYCLE.md
func (ca *certificateAuthorityImpl) IssuePrecertificate(ctx context.Context, issueReq *capb.IssueCertificateRequest) (*capb.IssuePrecertificateResponse, error) {
// issueReq.orderID may be zero, for ACMEv1 requests.
if core.IsAnyNilOrZero(issueReq, issueReq.Csr, issueReq.RegistrationID) {
return nil, berrors.InternalServerError("Incomplete issue certificate request")
}
// The CA must check if it is capable of issuing for the given certificate
// profile name. The name is checked here instead of the hash because the RA
// is unaware of what certificate profiles exist. Pre-existing orders stored
// in the database may not have an associated certificate profile name and
// will take the default name stored alongside the map.
if issueReq.CertProfileName == "" {
issueReq.CertProfileName = ca.certProfiles.defaultName
}
certProfile, ok := ca.certProfiles.profileByName[issueReq.CertProfileName]
if !ok {
return nil, fmt.Errorf("the CA is incapable of using a profile named %s", issueReq.CertProfileName)
}
serialBigInt, err := ca.generateSerialNumber()
if err != nil {
return nil, err
}
notBefore, notAfter := certProfile.profile.GenerateValidity(ca.clk.Now())
serialHex := core.SerialToString(serialBigInt)
regID := issueReq.RegistrationID
_, err = ca.sa.AddSerial(ctx, &sapb.AddSerialRequest{
Serial: serialHex,
RegID: regID,
Created: timestamppb.New(ca.clk.Now()),
Expires: timestamppb.New(notAfter),
})
if err != nil {
return nil, err
}
precertDER, cpwid, err := ca.issuePrecertificateInner(ctx, issueReq, certProfile, serialBigInt, notBefore, notAfter)
if err != nil {
return nil, err
}
_, err = ca.sa.SetCertificateStatusReady(ctx, &sapb.Serial{Serial: serialHex})
if err != nil {
return nil, err
}
return &capb.IssuePrecertificateResponse{
DER: precertDER,
CertProfileName: cpwid.name,
CertProfileHash: cpwid.hash[:],
}, nil
}
// IssueCertificateForPrecertificate final step in the [issuance cycle].
//
// Given a precertificate and a set of SCTs for that precertificate, it generates
// a linting final certificate, then signs a final certificate using a real issuer.
// The poison extension is removed from the precertificate and a
// SCT list extension is inserted in its place. Except for this and the
// signature the final certificate exactly matches the precertificate.
//
// It's critical not to sign two different final certificates for the same
// precertificate. This can happen, for instance, if the caller provides a
// different set of SCTs on subsequent calls to IssueCertificateForPrecertificate.
// We rely on the RA not to call IssueCertificateForPrecertificate twice for the
// same serial. This is accomplished by the fact that
// IssueCertificateForPrecertificate is only ever called in a straight-through
// RPC path without retries. If there is any error, including a networking
// error, the whole certificate issuance attempt fails and any subsequent
// issuance will use a different serial number.
//
// We also check that the provided serial number does not already exist as a
// final certificate, but this is just a belt-and-suspenders measure, since
// there could be race conditions where two goroutines are issuing for the same
// serial number at the same time.
//
// [issuance cycle]: https://github.com/letsencrypt/boulder/blob/main/docs/ISSUANCE-CYCLE.md
func (ca *certificateAuthorityImpl) IssueCertificateForPrecertificate(ctx context.Context, req *capb.IssueCertificateForPrecertificateRequest) (*corepb.Certificate, error) {
// issueReq.orderID may be zero, for ACMEv1 requests.
if core.IsAnyNilOrZero(req, req.DER, req.SCTs, req.RegistrationID, req.CertProfileHash) {
return nil, berrors.InternalServerError("Incomplete cert for precertificate request")
}
// The certificate profile hash is checked here instead of the name because
// the hash is over the entire contents of a *ProfileConfig giving assurance
// that the certificate profile has remained unchanged during the roundtrip
// from a CA, to the RA, then back to a (potentially different) CA node.
certProfile, ok := ca.certProfiles.profileByHash[[32]byte(req.CertProfileHash)]
if !ok {
return nil, fmt.Errorf("the CA is incapable of using a profile with hash %d", req.CertProfileHash)
}
precert, err := x509.ParseCertificate(req.DER)
if err != nil {
return nil, err
}
serialHex := core.SerialToString(precert.SerialNumber)
if _, err = ca.sa.GetCertificate(ctx, &sapb.Serial{Serial: serialHex}); err == nil {
err = berrors.InternalServerError("issuance of duplicate final certificate requested: %s", serialHex)
ca.log.AuditErr(err.Error())
return nil, err
} else if !errors.Is(err, berrors.NotFound) {
return nil, fmt.Errorf("error checking for duplicate issuance of %s: %s", serialHex, err)
}
var scts []ct.SignedCertificateTimestamp
for _, sctBytes := range req.SCTs {
var sct ct.SignedCertificateTimestamp
_, err = cttls.Unmarshal(sctBytes, &sct)
if err != nil {
return nil, err
}
scts = append(scts, sct)
}
issuer, ok := ca.issuers.byNameID[issuance.IssuerNameID(precert)]
if !ok {
return nil, berrors.InternalServerError("no issuer found for Issuer Name %s", precert.Issuer)
}
issuanceReq, err := issuance.RequestFromPrecert(precert, scts)
if err != nil {
return nil, err
}
names := strings.Join(issuanceReq.DNSNames, ", ")
ca.log.AuditInfof("Signing cert: issuer=[%s] serial=[%s] regID=[%d] names=[%s] certProfileName=[%s] certProfileHash=[%x] precert=[%s]",
issuer.Name(), serialHex, req.RegistrationID, names, certProfile.name, certProfile.hash, hex.EncodeToString(precert.Raw))
lintCertBytes, issuanceToken, err := issuer.Prepare(certProfile.profile, issuanceReq)
if err != nil {
ca.log.AuditErrf("Preparing cert failed: issuer=[%s] serial=[%s] regID=[%d] names=[%s] certProfileName=[%s] certProfileHash=[%x] err=[%v]",
issuer.Name(), serialHex, req.RegistrationID, names, certProfile.name, certProfile.hash, err)
return nil, berrors.InternalServerError("failed to prepare certificate signing: %s", err)
}
certDER, err := issuer.Issue(issuanceToken)
if err != nil {
ca.metrics.noteSignError(err)
ca.log.AuditErrf("Signing cert failed: issuer=[%s] serial=[%s] regID=[%d] names=[%s] certProfileName=[%s] certProfileHash=[%x] err=[%v]",
issuer.Name(), serialHex, req.RegistrationID, names, certProfile.name, certProfile.hash, err)
return nil, berrors.InternalServerError("failed to sign certificate: %s", err)
}
err = tbsCertIsDeterministic(lintCertBytes, certDER)
if err != nil {
return nil, err
}
ca.metrics.signatureCount.With(prometheus.Labels{"purpose": string(certType), "issuer": issuer.Name()}).Inc()
ca.log.AuditInfof("Signing cert success: issuer=[%s] serial=[%s] regID=[%d] names=[%s] certificate=[%s] certProfileName=[%s] certProfileHash=[%x]",
issuer.Name(), serialHex, req.RegistrationID, names, hex.EncodeToString(certDER), certProfile.name, certProfile.hash)
_, err = ca.sa.AddCertificate(ctx, &sapb.AddCertificateRequest{
Der: certDER,
RegID: req.RegistrationID,
Issued: timestamppb.New(ca.clk.Now()),
})
if err != nil {
ca.log.AuditErrf("Failed RPC to store at SA: issuer=[%s] serial=[%s] cert=[%s] regID=[%d] orderID=[%d] certProfileName=[%s] certProfileHash=[%x] err=[%v]",
issuer.Name(), serialHex, hex.EncodeToString(certDER), req.RegistrationID, req.OrderID, certProfile.name, certProfile.hash, err)
return nil, err
}
return &corepb.Certificate{
RegistrationID: req.RegistrationID,
Serial: core.SerialToString(precert.SerialNumber),
Der: certDER,
Digest: core.Fingerprint256(certDER),
Issued: timestamppb.New(precert.NotBefore),
Expires: timestamppb.New(precert.NotAfter),
}, nil
}
// generateSerialNumber produces a big.Int which has more than 64 bits of
// entropy and has the CA's configured one-byte prefix.
func (ca *certificateAuthorityImpl) generateSerialNumber() (*big.Int, error) {
// We want 136 bits of random number, plus an 8-bit instance id prefix.
const randBits = 136
serialBytes := make([]byte, randBits/8+1)
serialBytes[0] = byte(ca.prefix)
_, err := rand.Read(serialBytes[1:])
if err != nil {
err = berrors.InternalServerError("failed to generate serial: %s", err)
ca.log.AuditErrf("Serial randomness failed, err=[%v]", err)
return nil, err
}
serialBigInt := big.NewInt(0)
serialBigInt = serialBigInt.SetBytes(serialBytes)
return serialBigInt, nil
}
// generateSKID computes the Subject Key Identifier using one of the methods in
// RFC 7093 Section 2 Additional Methods for Generating Key Identifiers:
// The keyIdentifier [may be] composed of the leftmost 160-bits of the
// SHA-256 hash of the value of the BIT STRING subjectPublicKey
// (excluding the tag, length, and number of unused bits).
func generateSKID(pk crypto.PublicKey) ([]byte, error) {
pkBytes, err := x509.MarshalPKIXPublicKey(pk)
if err != nil {
return nil, err
}
var pkixPublicKey struct {
Algo pkix.AlgorithmIdentifier
BitString asn1.BitString
}
if _, err := asn1.Unmarshal(pkBytes, &pkixPublicKey); err != nil {
return nil, err
}
skid := sha256.Sum256(pkixPublicKey.BitString.Bytes)
return skid[0:20:20], nil
}
func (ca *certificateAuthorityImpl) issuePrecertificateInner(ctx context.Context, issueReq *capb.IssueCertificateRequest, certProfile *certProfileWithID, serialBigInt *big.Int, notBefore time.Time, notAfter time.Time) ([]byte, *certProfileWithID, error) {
csr, err := x509.ParseCertificateRequest(issueReq.Csr)
if err != nil {
return nil, nil, err
}
err = csrlib.VerifyCSR(ctx, csr, ca.maxNames, &ca.keyPolicy, ca.pa)
if err != nil {
ca.log.AuditErr(err.Error())
// VerifyCSR returns berror instances that can be passed through as-is
// without wrapping.
return nil, nil, err
}
// Select which pool of issuers to use, based on the to-be-issued cert's key
// type.
alg := csr.PublicKeyAlgorithm
// Select a random issuer from among the active issuers of this key type.
issuerPool, ok := ca.issuers.byAlg[alg]
if !ok || len(issuerPool) == 0 {
return nil, nil, berrors.InternalServerError("no issuers found for public key algorithm %s", csr.PublicKeyAlgorithm)
}
issuer := issuerPool[mrand.IntN(len(issuerPool))]
if issuer.Cert.NotAfter.Before(notAfter) {
err = berrors.InternalServerError("cannot issue a certificate that expires after the issuer certificate")
ca.log.AuditErr(err.Error())
return nil, nil, err
}
subjectKeyId, err := generateSKID(csr.PublicKey)
if err != nil {
return nil, nil, fmt.Errorf("computing subject key ID: %w", err)
}
serialHex := core.SerialToString(serialBigInt)
ca.log.AuditInfof("Signing precert: serial=[%s] regID=[%d] names=[%s] csr=[%s]",
serialHex, issueReq.RegistrationID, strings.Join(csr.DNSNames, ", "), hex.EncodeToString(csr.Raw))
names := csrlib.NamesFromCSR(csr)
req := &issuance.IssuanceRequest{
PublicKey: csr.PublicKey,
SubjectKeyId: subjectKeyId,
Serial: serialBigInt.Bytes(),
DNSNames: names.SANs,
CommonName: names.CN,
IncludeCTPoison: true,
IncludeMustStaple: issuance.ContainsMustStaple(csr.Extensions),
NotBefore: notBefore,
NotAfter: notAfter,
}
lintCertBytes, issuanceToken, err := issuer.Prepare(certProfile.profile, req)
if err != nil {
ca.log.AuditErrf("Preparing precert failed: issuer=[%s] serial=[%s] regID=[%d] names=[%s] certProfileName=[%s] certProfileHash=[%x] err=[%v]",
issuer.Name(), serialHex, issueReq.RegistrationID, strings.Join(csr.DNSNames, ", "), certProfile.name, certProfile.hash, err)
if errors.Is(err, linter.ErrLinting) {
ca.metrics.lintErrorCount.Inc()
}
return nil, nil, berrors.InternalServerError("failed to prepare precertificate signing: %s", err)
}
_, err = ca.sa.AddPrecertificate(context.Background(), &sapb.AddCertificateRequest{
Der: lintCertBytes,
RegID: issueReq.RegistrationID,
Issued: timestamppb.New(ca.clk.Now()),
IssuerNameID: int64(issuer.NameID()),
OcspNotReady: true,
})
if err != nil {
return nil, nil, err
}
certDER, err := issuer.Issue(issuanceToken)
if err != nil {
ca.metrics.noteSignError(err)
ca.log.AuditErrf("Signing precert failed: issuer=[%s] serial=[%s] regID=[%d] names=[%s] certProfileName=[%s] certProfileHash=[%x] err=[%v]",
issuer.Name(), serialHex, issueReq.RegistrationID, strings.Join(csr.DNSNames, ", "), certProfile.name, certProfile.hash, err)
return nil, nil, berrors.InternalServerError("failed to sign precertificate: %s", err)
}
err = tbsCertIsDeterministic(lintCertBytes, certDER)
if err != nil {
return nil, nil, err
}
ca.metrics.signatureCount.With(prometheus.Labels{"purpose": string(precertType), "issuer": issuer.Name()}).Inc()
ca.log.AuditInfof("Signing precert success: issuer=[%s] serial=[%s] regID=[%d] names=[%s] precertificate=[%s] certProfileName=[%s] certProfileHash=[%x]",
issuer.Name(), serialHex, issueReq.RegistrationID, strings.Join(csr.DNSNames, ", "), hex.EncodeToString(certDER), certProfile.name, certProfile.hash)
return certDER, &certProfileWithID{certProfile.name, certProfile.hash, nil}, nil
}
// verifyTBSCertIsDeterministic verifies that x509.CreateCertificate signing
// operation is deterministic and produced identical DER bytes between the given
// lint certificate and leaf certificate. If the DER byte equality check fails
// it's mississuance, but it's better to know about the problem sooner than
// later. The caller is responsible for passing the appropriate valid
// certificate bytes in the correct position.
func tbsCertIsDeterministic(lintCertBytes []byte, leafCertBytes []byte) error {
if core.IsAnyNilOrZero(lintCertBytes, leafCertBytes) {
return fmt.Errorf("lintCertBytes of leafCertBytes were nil")
}
// extractTBSCertBytes is a partial copy of //crypto/x509/parser.go to
// extract the RawTBSCertificate field from given DER bytes. It the
// RawTBSCertificate field bytes or an error if the given bytes cannot be
// parsed. This is far more performant than parsing the entire *Certificate
// structure with x509.ParseCertificate().
//
// RFC 5280, Section 4.1
// Certificate ::= SEQUENCE {
// tbsCertificate TBSCertificate,
// signatureAlgorithm AlgorithmIdentifier,
// signatureValue BIT STRING }
//
// TBSCertificate ::= SEQUENCE {
// ..
extractTBSCertBytes := func(inputDERBytes *[]byte) ([]byte, error) {
input := cryptobyte.String(*inputDERBytes)
// Extract the Certificate bytes
if !input.ReadASN1(&input, cryptobyte_asn1.SEQUENCE) {
return nil, errors.New("malformed certificate")
}
var tbs cryptobyte.String
// Extract the TBSCertificate bytes from the Certificate bytes
if !input.ReadASN1(&tbs, cryptobyte_asn1.SEQUENCE) {
return nil, errors.New("malformed tbs certificate")
}
if tbs.Empty() {
return nil, errors.New("parsed RawTBSCertificate field was empty")
}
return tbs, nil
}
lintRawTBSCert, err := extractTBSCertBytes(&lintCertBytes)
if err != nil {
return fmt.Errorf("while extracting lint TBS cert: %w", err)
}
leafRawTBSCert, err := extractTBSCertBytes(&leafCertBytes)
if err != nil {
return fmt.Errorf("while extracting leaf TBS cert: %w", err)
}
if !bytes.Equal(lintRawTBSCert, leafRawTBSCert) {
return fmt.Errorf("mismatch between lintCert and leafCert RawTBSCertificate DER bytes: \"%x\" != \"%x\"", lintRawTBSCert, leafRawTBSCert)
}
return nil
}