boulder/goodkey/good_key.go

318 lines
11 KiB
Go

package goodkey
import (
"context"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"math/big"
"sync"
"github.com/letsencrypt/boulder/core"
berrors "github.com/letsencrypt/boulder/errors"
sapb "github.com/letsencrypt/boulder/sa/proto"
"github.com/titanous/rocacheck"
)
// To generate, run: primes 2 752 | tr '\n' ,
var smallPrimeInts = []int64{
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,
109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,
173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283,
293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359,
367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431,
433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491,
499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571,
577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641,
643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709,
719, 727, 733, 739, 743, 751,
}
// singleton defines the object of a Singleton pattern
var (
smallPrimesSingleton sync.Once
smallPrimes []*big.Int
)
// BlockedKeyCheckFunc is used to pass in the sa.BlockedKey method to KeyPolicy,
// rather than storing a full sa.SQLStorageAuthority. This makes testing
// significantly simpler.
type BlockedKeyCheckFunc func(context.Context, *sapb.KeyBlockedRequest) (*sapb.Exists, error)
// KeyPolicy determines which types of key may be used with various boulder
// operations.
type KeyPolicy struct {
AllowRSA bool // Whether RSA keys should be allowed.
AllowECDSANISTP256 bool // Whether ECDSA NISTP256 keys should be allowed.
AllowECDSANISTP384 bool // Whether ECDSA NISTP384 keys should be allowed.
weakRSAList *WeakRSAKeys
blockedList *blockedKeys
dbCheck BlockedKeyCheckFunc
}
// NewKeyPolicy returns a KeyPolicy that allows RSA, ECDSA256 and ECDSA384.
// weakKeyFile contains the path to a JSON file containing truncated modulus
// hashes of known weak RSA keys. If this argument is empty RSA modulus hash
// checking will be disabled. blockedKeyFile contains the path to a YAML file
// containing Base64 encoded SHA256 hashes of pkix subject public keys that
// should be blocked. If this argument is empty then no blocked key checking is
// performed.
func NewKeyPolicy(weakKeyFile, blockedKeyFile string, bkc BlockedKeyCheckFunc) (KeyPolicy, error) {
kp := KeyPolicy{
AllowRSA: true,
AllowECDSANISTP256: true,
AllowECDSANISTP384: true,
dbCheck: bkc,
}
if weakKeyFile != "" {
keyList, err := LoadWeakRSASuffixes(weakKeyFile)
if err != nil {
return KeyPolicy{}, err
}
kp.weakRSAList = keyList
}
if blockedKeyFile != "" {
blocked, err := loadBlockedKeysList(blockedKeyFile)
if err != nil {
return KeyPolicy{}, err
}
kp.blockedList = blocked
}
return kp, nil
}
// GoodKey returns true if the key is acceptable for both TLS use and account
// key use (our requirements are the same for either one), according to basic
// strength and algorithm checking. GoodKey only supports pointers: *rsa.PublicKey
// and *ecdsa.PublicKey. It will reject non-pointer types.
// TODO: Support JSONWebKeys once go-jose migration is done.
func (policy *KeyPolicy) GoodKey(ctx context.Context, key crypto.PublicKey) error {
// If there is a blocked list configured then check if the public key is one
// that has been administratively blocked.
if policy.blockedList != nil {
if blocked, err := policy.blockedList.blocked(key); err != nil {
return berrors.InternalServerError("error checking blocklist for key: %v", key)
} else if blocked {
return berrors.BadPublicKeyError("public key is forbidden")
}
}
if policy.dbCheck != nil {
digest, err := core.KeyDigest(key)
if err != nil {
return err
}
exists, err := policy.dbCheck(ctx, &sapb.KeyBlockedRequest{KeyHash: digest[:]})
if err != nil {
return err
}
if *exists.Exists {
return berrors.BadPublicKeyError("public key is forbidden")
}
}
switch t := key.(type) {
case *rsa.PublicKey:
return policy.goodKeyRSA(t)
case *ecdsa.PublicKey:
return policy.goodKeyECDSA(t)
case ecdsa.PublicKey, rsa.PublicKey:
return berrors.MalformedError("non-reference keys not supported")
default:
return berrors.MalformedError("unknown key type %T", key)
}
}
// GoodKeyECDSA determines if an ECDSA pubkey meets our requirements
func (policy *KeyPolicy) goodKeyECDSA(key *ecdsa.PublicKey) (err error) {
// Check the curve.
//
// The validity of the curve is an assumption for all following tests.
err = policy.goodCurve(key.Curve)
if err != nil {
return err
}
// Key validation routine adapted from NIST SP800-56A § 5.6.2.3.2.
// <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf>
//
// Assuming a prime field since a) we are only allowing such curves and b)
// crypto/elliptic only supports prime curves. Where this assumption
// simplifies the code below, it is explicitly stated and explained. If ever
// adapting this code to support non-prime curves, refer to NIST SP800-56A §
// 5.6.2.3.2 and adapt this code appropriately.
params := key.Params()
// SP800-56A § 5.6.2.3.2 Step 1.
// Partial check of the public key for an invalid range in the EC group:
// Verify that key is not the point at infinity O.
// This code assumes that the point at infinity is (0,0), which is the
// case for all supported curves.
if isPointAtInfinityNISTP(key.X, key.Y) {
return berrors.MalformedError("key x, y must not be the point at infinity")
}
// SP800-56A § 5.6.2.3.2 Step 2.
// "Verify that x_Q and y_Q are integers in the interval [0,p-1] in the
// case that q is an odd prime p, or that x_Q and y_Q are bit strings
// of length m bits in the case that q = 2**m."
//
// Prove prime field: ASSUMED.
// Prove q != 2: ASSUMED. (Curve parameter. No supported curve has q == 2.)
// Prime field && q != 2 => q is an odd prime p
// Therefore "verify that x, y are in [0, p-1]" satisfies step 2.
//
// Therefore verify that both x and y of the public key point have the unique
// correct representation of an element in the underlying field by verifying
// that x and y are integers in [0, p-1].
if key.X.Sign() < 0 || key.Y.Sign() < 0 {
return berrors.MalformedError("key x, y must not be negative")
}
if key.X.Cmp(params.P) >= 0 || key.Y.Cmp(params.P) >= 0 {
return berrors.MalformedError("key x, y must not exceed P-1")
}
// SP800-56A § 5.6.2.3.2 Step 3.
// "If q is an odd prime p, verify that (y_Q)**2 === (x_Q)***3 + a*x_Q + b (mod p).
// If q = 2**m, verify that (y_Q)**2 + (x_Q)*(y_Q) == (x_Q)**3 + a*(x_Q)*2 + b in
// the finite field of size 2**m.
// (Ensures that the public key is on the correct elliptic curve.)"
//
// q is an odd prime p: proven/assumed above.
// a = -3 for all supported curves.
//
// Therefore step 3 is satisfied simply by showing that
// y**2 === x**3 - 3*x + B (mod P).
//
// This proves that the public key is on the correct elliptic curve.
// But in practice, this test is provided by crypto/elliptic, so use that.
if !key.Curve.IsOnCurve(key.X, key.Y) {
return berrors.MalformedError("key point is not on the curve")
}
// SP800-56A § 5.6.2.3.2 Step 4.
// "Verify that n*Q == Ø.
// (Ensures that the public key has the correct order. Along with check 1,
// ensures that the public key is in the correct range in the correct EC
// subgroup, that is, it is in the correct EC subgroup and is not the
// identity element.)"
//
// Ensure that public key has the correct order:
// verify that n*Q = Ø.
//
// n*Q = Ø iff n*Q is the point at infinity (see step 1).
ox, oy := key.Curve.ScalarMult(key.X, key.Y, params.N.Bytes())
if !isPointAtInfinityNISTP(ox, oy) {
return berrors.MalformedError("public key does not have correct order")
}
// End of SP800-56A § 5.6.2.3.2 Public Key Validation Routine.
// Key is valid.
return nil
}
// Returns true iff the point (x,y) on NIST P-256, NIST P-384 or NIST P-521 is
// the point at infinity. These curves all have the same point at infinity
// (0,0). This function must ONLY be used on points on curves verified to have
// (0,0) as their point at infinity.
func isPointAtInfinityNISTP(x, y *big.Int) bool {
return x.Sign() == 0 && y.Sign() == 0
}
// GoodCurve determines if an elliptic curve meets our requirements.
func (policy *KeyPolicy) goodCurve(c elliptic.Curve) (err error) {
// Simply use a whitelist for now.
params := c.Params()
switch {
case policy.AllowECDSANISTP256 && params == elliptic.P256().Params():
return nil
case policy.AllowECDSANISTP384 && params == elliptic.P384().Params():
return nil
default:
return berrors.MalformedError("ECDSA curve %v not allowed", params.Name)
}
}
// GoodKeyRSA determines if a RSA pubkey meets our requirements
func (policy *KeyPolicy) goodKeyRSA(key *rsa.PublicKey) (err error) {
if !policy.AllowRSA {
return berrors.MalformedError("RSA keys are not allowed")
}
if policy.weakRSAList != nil && policy.weakRSAList.Known(key) {
return berrors.MalformedError("key is on a known weak RSA key list")
}
// Baseline Requirements Appendix A
// Modulus must be >= 2048 bits and <= 4096 bits
modulus := key.N
modulusBitLen := modulus.BitLen()
const maxKeySize = 4096
if modulusBitLen < 2048 {
return berrors.MalformedError("key too small: %d", modulusBitLen)
}
if modulusBitLen > maxKeySize {
return berrors.MalformedError("key too large: %d > %d", modulusBitLen, maxKeySize)
}
// Bit lengths that are not a multiple of 8 may cause problems on some
// client implementations.
if modulusBitLen%8 != 0 {
return berrors.MalformedError("key length wasn't a multiple of 8: %d", modulusBitLen)
}
// Rather than support arbitrary exponents, which significantly increases
// the size of the key space we allow, we restrict E to the defacto standard
// RSA exponent 65537. There is no specific standards document that specifies
// 65537 as the 'best' exponent, but ITU X.509 Annex C suggests there are
// notable merits for using it if using a fixed exponent.
//
// The CABF Baseline Requirements state:
// The CA SHALL confirm that the value of the public exponent is an
// odd number equal to 3 or more. Additionally, the public exponent
// SHOULD be in the range between 2^16 + 1 and 2^256-1.
//
// By only allowing one exponent, which fits these constraints, we satisfy
// these requirements.
if key.E != 65537 {
return berrors.MalformedError("key exponent must be 65537")
}
// The modulus SHOULD also have the following characteristics: an odd
// number, not the power of a prime, and have no factors smaller than 752.
// TODO: We don't yet check for "power of a prime."
if checkSmallPrimes(modulus) {
return berrors.MalformedError("key divisible by small prime")
}
// Check for weak keys generated by Infineon hardware
// (see https://crocs.fi.muni.cz/public/papers/rsa_ccs17)
if rocacheck.IsWeak(key) {
return berrors.MalformedError("key generated by vulnerable Infineon-based hardware")
}
return nil
}
// Returns true iff integer i is divisible by any of the primes in smallPrimes.
//
// Short circuits; execution time is dependent on i. Do not use this on secret
// values.
func checkSmallPrimes(i *big.Int) bool {
smallPrimesSingleton.Do(func() {
for _, prime := range smallPrimeInts {
smallPrimes = append(smallPrimes, big.NewInt(prime))
}
})
for _, prime := range smallPrimes {
var result big.Int
result.Mod(i, prime)
if result.Sign() == 0 {
return true
}
}
return false
}