

Test Targets:
 Linkerd2 Main
 Linkerd2 Proxy APIs

Pentest Report

Client:
Linkerd2 team
in collaboration with the
Open Source Technology​
Improvement Fund, Inc

7ASecurity Test Team:

●​ Abraham Aranguren, MSc.
●​ Daniel Ortiz, MSc.
●​ Miroslav Štampar, PhD.

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/

Pentest Report

INDEX

Introduction​ 3
Scope​ 4
Identified Vulnerabilities​ 5

LNK-01-003 Possible RCE via clear-text HTTP Instructions in Script (High)​ 5
Hardening Recommendations​ 7

LNK-01-001 Enhanced Security Against MitM via TLS MinVersion (Info)​ 7
LNK-01-002 Possible DYLIB Injection on MacOS Client (Medium)​ 9
LNK-01-004 Possible WebSocket Hijacking via missing Validation (Low)​ 11
LNK-01-005 Possible MitM via Insecure gRPC without TLS (Info)​ 12
LNK-01-006 Multiple Vulnerabilities Found in Docker Images (Low)​ 13
LNK-01-007 Multiple Vulnerable Dependencies (Low)​ 17

Conclusion​ 19

7ASecurity © 2024
 2

https://7asecurity.com

Pentest Report

Introduction
“Linkerd is an ultralight, security-first service mesh for Kubernetes. Linkerd adds critical
security, observability, and reliability features to your Kubernetes stack with no code
change required.”

From https://github.com/linkerd/linkerd2

This document outlines the results of a penetration test and whitebox security review
conducted against the Linkerd2 platform. The project was solicited by Linkerd2,
facilitated by the Open Source Technology Improvement Fund, Inc (OSTIF), funded by
the Cloud Native Computing Foundation (CNCF), and executed by 7ASecurity from
September until November 2024. The audit team dedicated 28 working days to complete
this assignment. Please note that this is the third penetration test for this project.
Consequently, the identification of security weaknesses was expected to be more difficult
during this engagement, as more vulnerabilities are identified and resolved after each
testing cycle.

During this iteration the goal was to review the solution as thoroughly as possible, to
ensure Linkerd2 users can be provided with the best possible security. The methodology
implemented was whitebox: 7ASecurity was provided with access to a staging
environment, documentation, test users, and source code. A team of three senior
auditors carried out all tasks required for this engagement, including preparation,
delivery, documentation of findings and communication.

A number of necessary arrangements were in place by September 2024, to facilitate a
straightforward commencement for 7ASecurity. In order to enable effective collaboration,
information to coordinate the test was relayed through email, as well as a shared Slack
channel. The Linkerd2 team was helpful and responsive throughout the audit, which
ensured that 7ASecurity was provided with the necessary access and information at all
times, thus avoiding unnecessary delays. 7ASecurity provided regular updates regarding
the audit status and its interim findings during the engagement.

The findings of the security audit can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total Issues

1 6 7

Moving forward, the scope section elaborates on the items under review, while the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

7ASecurity © 2024
 3

https://github.com/linkerd/linkerd2
https://7asecurity.com

Pentest Report

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance relating to the context, preparation, and general impressions gained
throughout this test, as well as a summary of the perceived security posture of the
Linkerd2 applications.

Scope

The following list outlines the items in scope for this project:

●​ Linkerd2 Main repository:
○​ https://github.com/linkerd/linkerd2

●​ Linkerd2 Proxy APIs:
○​ Linkerd2-proxy:

■​ https://github.com/linkerd/linkerd2-proxy
○​ Linkerd2-proxy-api

■​ https://github.com/linkerd/linkerd2-proxy-api
○​ Linkerd2-proxy-init

■​ https://github.com/linkerd/linkerd2-proxy-init

7ASecurity © 2024
 4

https://github.com/linkerd/linkerd2
https://github.com/linkerd/linkerd2-proxy
https://github.com/linkerd/linkerd2-proxy-api
https://github.com/linkerd/linkerd2-proxy-init
https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. LNK-01-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

LNK-01-003 Possible RCE via clear-text HTTP Instructions in Script (High)

Retest Notes: The Linkerd2 team resolved this issue1 and 7ASecurity confirmed that the
fix is valid.

The Linkerd2 codebase includes a protoc shell script that directs users to download the
unzip utility from a clear-text HTTP URL. Furthermore, even if that URL was accessed
over TLS, the top three links to download unzip on that page are clear-text FTP URLs. A
malicious attacker able to modify clear-text HTTP communications (i.e. via Public Wi-Fi
without guest isolation, DNS rebinding, ISP MitM, BGP Hijacking) could leverage this
weakness to modify the legitimate unzip utility with an attacker-controlled binary, in
situations where it is not already installed on the system.

Affected File:
https://github.com/linkerd/linkerd2/blob/[...]/bin/protoc

Affected Code:
require_from() {​
 if ! command -v "$1" >/dev/null 2>/dev/null ; then​
 echo "Please acquire $1 from $2" >&2​
 return 1​
 fi​
}​
​
if [! -f "$protocbin"]; then​
 require_from curl 'https://curl.se/download.html'​
 require_from unzip 'http://infozip.sourceforge.net/UnZip.html#Downloads'​
 [...]​
fi​

Please note that the top three links to download unzip from that sourceforge.net page
are clear-text FTP links:

Affected URL:
https://infozip.sourceforge.net/UnZip.html#Downloads

1 https://github.com/linkerd/linkerd2/commit/08a6dba655e99cd3a055711c16bd0334dd175a9f

7ASecurity © 2024
 5

https://github.com/linkerd/linkerd2/blob/7428d4aa51343e217ea63bb0d6dd4c22fd8e6193/bin/protoc
https://infozip.sourceforge.net/UnZip.html#Downloads
https://github.com/linkerd/linkerd2/commit/08a6dba655e99cd3a055711c16bd0334dd175a9f
https://7asecurity.com

Pentest Report

Affected Content:
Ready-to-run binary versions of UnZip are available for numerous platforms and
operating systems, but for most systems, only older binaries are available. The three
primary CTAN sites (and their many mirrors) contain a snapshot of these binaries,
current as of roughly 2004 (i.e., UnZip 5.51 and Zip 2.3 timeframe):

●​ tug.ctan.org (US) [FROZEN]
●​ ftp.tex.ac.uk (UK) [FROZEN]
●​ ftp.dante.de (Germany) [FROZEN]

As can be seen above, the proposed page to download unzip from starts with three
clear-text FTP mirrors:
ftp://tug.ctan.org/tex-archive/tools/zip/info-zip/
ftp://ftp.tex.ac.uk/tex-archive/tools/zip/info-zip/
ftp://ftp.dante.de/tex-archive/tools/zip/info-zip/

This may be further validated with the clear-text telnet tool, connecting to port 21 (FTP)
to any of the aforementioned servers:

Command:
telnet tug.ctan.org 21

Output:
Trying 155.101.98.136...

Connected to ftp.math.utah.edu.

Escape character is '^]'.

220 ftp.math.utah.edu FTP server ready.

The script should be updated to provide safer instructions for users to download the
unzip utility. This should be an https:// URL, without any links to clear-text download
resources, such as clear-text FTP mirrors. Incorporating secure download practices will
enhance the security posture of Linkerd2, protecting users from potential MITM and
integrity risks.

7ASecurity © 2024
 6

ftp://tug.ctan.org/tex-archive/tools/zip/info-zip/
ftp://ftp.tex.ac.uk/tex-archive/tools/zip/info-zip/
ftp://ftp.dante.de/tex-archive/tools/zip/info-zip/
ftp://tug.ctan.org/tex-archive/tools/zip/info-zip/
ftp://ftp.tex.ac.uk/tex-archive/tools/zip/info-zip/
ftp://ftp.dante.de/tex-archive/tools/zip/info-zip/
https://7asecurity.com

Pentest Report

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

LNK-01-001 Enhanced Security Against MitM via TLS MinVersion (Info)

Retest Notes: The Linkerd2 team resolved this issue2 and 7ASecurity confirmed that the
fix is valid.

The Linkerd2 codebase currently supports TLS 1.2, but upgrading to TLS 1.3 is advised
for enhanced security. Although TLS 1.2 is reliable and widely used, it is vulnerable to
certain cryptographic weaknesses and attacks3. Starting in 2024, enforcing TLS 1.34 as
the minimum version is recommended, due to greater security, widespread support, and
six-year availability. Exceptions may be made for legacy clients needing older TLS
versions. The issue originates from the following files:

Affected Files:
https://github.com/linkerd/linkerd2/blob/[...]/controller/webhook/server.go
https://github.com/linkerd/linkerd2/blob/[..]/viz/tap/api/server.go

Example Code:
func NewServer(​
 [...]​
​
 server := &http.Server{​
 Addr: addr,​
 ReadHeaderTimeout: 15 * time.Second,​
 TLSConfig: &tls.Config{​
 MinVersion: tls.VersionTLS12,​
 },​
 }

While the likelihood of Man-In-The-Middle (MitM) attacks on Linkerd2 users is low,
security can be further enhanced by configuring TLS instances to use tls.VersionTLS13
as the minimum version.

4 https://www.vertexcybersecurity.com.au/tls1-2-end-of-life/
3 https://www.cloudflare.com/learning/ssl/why-use-tls-1.3/
2 https://github.com/linkerd/linkerd2/commit/3847f9cf13c63f4829eebb7a81d461319ddc9261

7ASecurity © 2024
 7

https://github.com/linkerd/linkerd2/blob/7428d4aa51343e217ea63bb0d6dd4c22fd8e6193/controller/webhook/server.go
https://github.com/linkerd/linkerd2/blob/7428d4aa51343e217ea63bb0d6dd4c22fd8e6193/viz/tap/api/server.go
https://www.vertexcybersecurity.com.au/tls1-2-end-of-life/
https://www.cloudflare.com/learning/ssl/why-use-tls-1.3/
https://github.com/linkerd/linkerd2/commit/3847f9cf13c63f4829eebb7a81d461319ddc9261
https://7asecurity.com

Pentest Report

LNK-01-002 Possible DYLIB Injection on MacOS Client (Medium)

The MacOS Linkerd2 CLI5 is susceptible to DYLIB Injection attacks6 due to a missing
__RESTRICT segment and lack of a hardened runtime in the Mach-O file. A malicious
attacker, able to set environment variables, might exploit this to inject dynamic libraries
into a legitimate Linkerd2 process. These injected libraries could then execute arbitrary
code within the process, potentially leading to unauthorized access, data theft, or system
compromise.

To confirm this weakness it is necessary to compile a DYLIB library and use the
DYLD_INSERT_LIBRARIES environment variable as shown in the following steps:

Step 1: Create a DYLIB Library to Inject

PoC Code:
#include <stdio.h>​
#include <syslog.h>​
__attribute__((constructor))​
​
static void myconstructor(int argc, const char **argv)​
{​
printf("[+] dylib constructor called from %s\n", argv[0]);​
syslog(LOG_ERR, "[+] dylib constructor called from %s\n", argv[0]);​
}

Step 2: Compile the dynamic library

Command:
gcc -dynamiclib libtest.c -o libtest.dylib

Step 3: Inject the DYLIB library into the target application

Command:
DYLD_INSERT_LIBRARIES=libtest.dylib linkerd —help

Output:
[+] dylib constructor called from linkerd

linkerd manages the Linkerd service mesh.

Usage:

 linkerd [command]

Available Commands:

 authz List authorizations for a resource

 check Check the Linkerd installation for potential problems

6 https://attack.mitre.org/techniques/T1574/006/ ​
5 https://github.com/linkerd/linkerd2/[...]/edge-24.10.5/linkerd2-cli-edge-24.10.5-darwin-arm64

7ASecurity © 2024
 8

https://attack.mitre.org/techniques/T1574/006/
https://github.com/linkerd/linkerd2/releases/download/edge-24.10.5/linkerd2-cli-edge-24.10.5-darwin-arm64
https://7asecurity.com

Pentest Report

[..]

This can also be confirmed by searching the desired string in the log stream:

Command:
log stream --style syslog --predicate 'eventMessage CONTAINS[c] "constructor"'

Output:
Filtering the log data using "composedMessage CONTAINS[c] "constructor""

Timestamp (process)[PID]

2024-11-04 22:28:03.493990-0300 localhost linkerd-edge-24.10.5[70969]: (libtest.dylib)

[+] dylib constructor called from linkerd

To mitigate DYLIB injection risks associated with the DYLD_INSERT_LIBRARIES
environment variable on MacOS, a restricted segment should be enabled to prevent
dynamic loading of dylib libraries for arbitrary code injection. It is recommended to use
the following compiler options to enable the restricted segment feature:

Proposed fix 1 (compiler options on binaries that use DYLB linker):
-Wl,-sectcreate,__RESTRICT,__restrict,/dev/null

Alternatively, a hardened runtime entitlement7 could be set on the Mach-O binary, please
notice that this will require a paid subscription:

Proposed fix 2 (hardened runtime entitlement):

Command:
codesign -s cert --option=runtime linkerd

Command (check for hardened options):
codesign -dv linkerd

Output:
Executable=/Users/[...]/linkerd2

Identifier=main

Format=Mach-O thin (arm64)

CodeDirectory v=20500 size=490437 flags=0x10000(runtime) hashes=15321+2

location=embedded

Signature size=1644

Signed Time=4 Nov 2024 at 22:24:07

Info.plist=not bound

TeamIdentifier=not set

Runtime Version=11.0.0

Sealed Resources=none

Internal requirements count=1 size=80

7 https://developer.apple.com/documentation/security/hardened_runtime

7ASecurity © 2024
 9

https://developer.apple.com/documentation/security/hardened_runtime
https://7asecurity.com

Pentest Report

LNK-01-004 Possible WebSocket Hijacking via missing Validation (Low)

Retest Notes: The Linkerd2 team resolved this issue8 and 7ASecurity confirmed that the
fix is valid.

The Linkerd2 codebase is potentially vulnerable to Cross-Site WebSocket Hijacking
(CSWSH)9 due to missing validation of the Origin header during WebSocket
handshakes. CSWSH, similar to Cross-Site Request Forgery (CSRF), exploits the
WebSocket protocol to initiate connections from untrusted origins. Without proper Origin
header validation, a malicious website could establish a WebSocket connection with the
server, potentially enabling unauthorized actions on behalf of an authenticated user. This
can be confirmed by observing the following code snippet:

Affected File:
https://github.com/linkerd/linkerd2/blob/[...]/web/srv/api_handlers.go

Affected Code:
func (h *handler) handleAPITap(w http.ResponseWriter, req *http.Request, p

httprouter.Params) {​
 ws, err := websocketUpgrader.Upgrade(w, req, nil)​
 if err != nil {​
 renderJSONError(w, err, http.StatusInternalServerError)​
 return​
 }​
 defer ws.Close()

According to the Gorilla WebSocket documentation10, if the CheckOrigin function is nil,
requests are denied when the Origin header is present but does not match the Host
header, providing basic validation. This behavior was confirmed at runtime by
7ASecurity, where exploitation attempts failed under these conditions. However, relying
on the default behavior of a third-party library introduces unnecessary risks.

To mitigate these risks, it is recommended to explicitly implement a CheckOrigin function
in websocketUpgrader to validate that the Origin header matches trusted domains. This
ensures only trusted origins can establish WebSocket connections11, providing an
additional layer of security.

11 https://stackoverflow.com/a/65039729
10 https://pkg.go.dev/github.com/gorilla/websocket#Upgrader.CheckOrigin
9 https://portswigger.net/web-security/websockets/cross-site-websocket-hijacking
8 https://github.com/linkerd/linkerd2/commit/28c1b7807744caaf3a36950a3d004e76b0e38ab1

7ASecurity © 2024
 10

https://github.com/linkerd/linkerd2/blob/7428d4aa51343e217ea63bb0d6dd4c22fd8e6193/web/srv/api_handlers.go
https://stackoverflow.com/a/65039729
https://pkg.go.dev/github.com/gorilla/websocket#Upgrader.CheckOrigin
https://portswigger.net/web-security/websockets/cross-site-websocket-hijacking
https://github.com/linkerd/linkerd2/commit/28c1b7807744caaf3a36950a3d004e76b0e38ab1
https://7asecurity.com

Pentest Report

LNK-01-005 Possible MitM via Insecure gRPC without TLS (Info)

Note: It was later found that while insecure.NewCredentials() allows the bypass of TLS,
for local development or non-production systems, Linkerd2 will still employ a layer of
encryption at a higher level in all relevant scenarios, such as CLI to Control Plane and
Proxy to Control Plane. Nevertheless, appropriate security warnings ought to be in place
to alert customers when they disable encryption layers in Linkerd2 applications.

While Linkerd2 automatically enforces mutually authenticated Transport Layer Security
(mTLS) for all TCP traffic among interconnected pods12, Linkerd does not require mTLS
unless authorization policies are configured13. Therefore, given certain gRPC clients and
servers use insecure.NewCredentials()14, which disables transport security, malicious
attackers may be able to intercept, eavesdrop, and manipulate transmitted data in at
least some configurations. This can be confirmed by observing the following code
snippets:

Affected Files:
https://github.com/linkerd/linkerd2/blob[..]/cli/cmd/policy.go#L92
https://github.com/linkerd/linkerd2/blob/[...]/controller/api/destination/client.go#L21
https://github.com/linkerd/linkerd2/blob[..]/viz/metrics-api/client/client.go#L51
https://github.com/linkerd/linkerd2/blob/[..]/viz/tap/api/client.go#L11
https://github.com/linkerd/linkerd2/blob/[..]/viz/tap/api/grpc_server.go#L311

Affected Code:
func NewClient(addr string) (pb.DestinationClient, *grpc.ClientConn, error) {​
 conn, err := grpc.NewClient(addr,

grpc.WithTransportCredentials(insecure.NewCredentials()),​
 grpc.WithStatsHandler(&ocgrpc.ClientHandler{}))​
 if err != nil {​
 return nil, nil, err​
 }​
​
 return pb.NewDestinationClient(conn), conn, nil​
}

To ensure secure and encrypted gRPC transport, avoid insecure.NewCredentials(), as it
lacks authentication and encryption. Use credentials.NewClientTLSFromFile() to enable
TLS, ensuring all client-server data is encrypted and authenticated, thus reducing the
risk of unauthorized access and eavesdropping.

14 https://pkg.go.dev/google.golang.org/grpc/credentials/insecure#NewCredentials
13 https://linkerd.io/2.16/features/automatic-mtls/#caveats-and-future-work
12 https://linkerd.io/2.16/features/automatic-mtls/

7ASecurity © 2024
 11

https://github.com/linkerd/linkerd2/blob/d42432914daaecbbf25cc8d58a05e71516a045c6/cli/cmd/policy.go#L92
https://github.com/linkerd/linkerd2/blob/d42432914daaecbbf25cc8d58a05e71516a045c6/controller/api/destination/client.go#L21
https://github.com/linkerd/linkerd2/blob/d42432914daaecbbf25cc8d58a05e71516a045c6/viz/metrics-api/client/client.go#L51
https://github.com/linkerd/linkerd2/blob/d42432914daaecbbf25cc8d58a05e71516a045c6/viz/tap/api/client.go#L11
https://github.com/linkerd/linkerd2/blob/d42432914daaecbbf25cc8d58a05e71516a045c6/viz/tap/api/grpc_server.go#L311
https://pkg.go.dev/google.golang.org/grpc/credentials/insecure#NewCredentials
https://linkerd.io/2.16/features/automatic-mtls/#caveats-and-future-work
https://linkerd.io/2.16/features/automatic-mtls/
https://7asecurity.com

Pentest Report

LNK-01-006 Multiple Vulnerabilities Found in Docker Images (Low)

Retest Notes: The Linkerd2 team resolved this issue15 and 7ASecurity confirmed that
the fix is valid.

Several Docker images contain components with publicly known vulnerabilities,
introducing security risks. As these vulnerabilities are contained within the Docker
containers and do not directly impact the host system, the severity is reduced. The
tables below summarize significant vulnerabilities in the outdated images.

Issue 1: Docker image rust:1.76.016

Affected Files:
https://github.com/linkerd/linkerd2/blob/[...]/.github/workflows/codecov.yml
https://github.com/linkerd/linkerd2-proxy/blob/[...]/.github/workflows/fuzzers.yml

Affected Code:
rust:​
 name: Rust​
 runs-on: ubuntu-22.04​
 timeout-minutes: 15​
 container:​
 image: docker://rust:1.76.0

Vulnerable Components:

Component Issue Severity

libexpat CVE-2024-45492⁠17 - nextScaffoldPart in
xmlparse.c can have an integer overflow

Critical

CVE-2024-45491⁠18 - dtdCopy in xmlparse.c can
have an integer overflow for nDefaultAtts

CVE-2024-45490⁠19 - xmlparse.c does not reject a
negative length for XML_ParseBuffer

High

git CVE-2024-32002⁠20 - Repositories with submodules Critical

20 https://scout.docker.com/vulnerabilities/id/CVE-2024-32002⁠
19 https://scout.docker.com/vulnerabilities/id/CVE-2024-45490
18 https://scout.docker.com/vulnerabilities/id/CVE-2024-45491
17 https://scout.docker.com/vulnerabilities/id/CVE-2024-45492
16 https://hub.docker.com/layers/library/rust/1.76.0/images/sha256-c3a[...]ccf
15 https://github.com/linkerd/linkerd2-proxy-init/pull/450

7ASecurity © 2024
 12

https://github.com/linkerd/linkerd2/blob/c9791c6bff921b811f7a6884285c15e1ac7febe9/.github/workflows/codecov.yml
https://github.com/linkerd/linkerd2-proxy/blob/3130e3c08aa1d510310220caa091529c0db8c009/.github/workflows/fuzzers.yml
https://scout.docker.com/vulnerabilities/id/CVE-2024-32002
https://scout.docker.com/vulnerabilities/id/CVE-2024-45490
https://scout.docker.com/vulnerabilities/id/CVE-2024-45491
https://scout.docker.com/vulnerabilities/id/CVE-2024-45492
https://hub.docker.com/layers/library/rust/1.76.0/images/sha256-c3a4236c7a4cfa1159298062d02c9acde64c99c5e64e6e17f41e1a017050accf
https://github.com/linkerd/linkerd2-proxy-init/pull/450
https://7asecurity.com

Pentest Report

can be crafted in a way that exploits a bug in Git
whereby it can be fooled into writing files not into
the submodule worktree but into a .git/ directory

CVE-2024-32004⁠21, CVE-2024-32465⁠22 - Specially
crafted local repository, when cloned, will execute
arbitrary code during the operation

High

CVE-2023-29007⁠23 - Specially crafted .gitmodules
file with submodule URLs that are longer than 1024
characters can used to exploit a bug in
config.c::git_config_copy_or_rename_section_in_fil
e()

CVE-2023-25652⁠24 - Specially crafted input to git
apply --reject, a path outside the working tree can
be overwritten with partially controlled contents

krb5 CVE-2024-3737125 - Invalid memory read in GSS
token handling

Critical

CVE-2024-37370⁠26 - Potential plaintext
modification in confidential GSS krb5 wrap token

High

libaom CVE-2024-517127⁠ - Integer overflow in libaom
internal function img_alloc_helper can lead to heap
buffer overflow

Critical

glibc CVE-2024-3360228 - netgroup cache can corrupt
memory

High

CVE-2024-33601⁠29 - netgroup cache may
terminate daemon on memory allocation failure

CVE-2024-296130 - iconv() function may overflow

30 https://scout.docker.com/vulnerabilities/id/CVE-2024-2961
29 https://scout.docker.com/vulnerabilities/id/CVE-2024-33601⁠
28 https://scout.docker.com/vulnerabilities/id/CVE-2024-33602
27 https://scout.docker.com/vulnerabilities/id/CVE-2024-5171
26 https://scout.docker.com/vulnerabilities/id/CVE-2024-37370⁠
25 https://scout.docker.com/vulnerabilities/id/CVE-2024-37371
24 https://scout.docker.com/vulnerabilities/id/CVE-2023-25652⁠
23 https://scout.docker.com/vulnerabilities/id/CVE-2023-29007⁠
22 https://scout.docker.com/vulnerabilities/id/CVE-2024-32465⁠
21 https://scout.docker.com/vulnerabilities/id/CVE-2024-32004⁠

7ASecurity © 2024
 13

https://scout.docker.com/vulnerabilities/id/CVE-2024-2961
https://scout.docker.com/vulnerabilities/id/CVE-2024-33601
https://scout.docker.com/vulnerabilities/id/CVE-2024-33602
https://scout.docker.com/vulnerabilities/id/CVE-2024-5171
https://scout.docker.com/vulnerabilities/id/CVE-2024-37370
https://scout.docker.com/vulnerabilities/id/CVE-2024-37371
https://scout.docker.com/vulnerabilities/id/CVE-2023-25652
https://scout.docker.com/vulnerabilities/id/CVE-2023-29007
https://scout.docker.com/vulnerabilities/id/CVE-2024-32465
https://scout.docker.com/vulnerabilities/id/CVE-2024-32004
https://7asecurity.com

Pentest Report

the output buffer

Issue 2: Docker image alpine:3.19.031

Affected File:
https://github.com/linkerd/linkerd2-proxy-init/…/integration/linkerd-cni-config.yml

Affected Code:
extraInitContainers:​
- name: sleep​
 image: alpine:3.19.0​
 command: ["/bin/sh", "-c", "sleep 15"]
​
Vulnerable Components:

Component Issue Severity

openssl CVE-2024-553532⁠ - Calling the OpenSSL API
function SSL_select_next_proto() with an empty
supported client protocols buffer may cause a
crash or memory contents to be sent to the peer

Critical

CVE-2024-6119⁠33 - Applications performing
certificate name checks (e.g., TLS clients checking
server certificates) may attempt to read an invalid
memory address resulting in abnormal termination
of the application process

High

It is recommended to update the affected Docker images to the latest stable versions to
mitigate these vulnerabilities. Avoid sticking to specific minor revisions (e.g.,
alpine:3.19.0) and ensure that the images are regularly updated to incorporate security
patches. Additionally, consider using automated security scanning tools such as Trivy34
or Snyk35 to identify and address vulnerabilities in Docker images on an ongoing basis.

35 https://docs.snyk.io/scan-with-snyk/snyk-container/scan-container-images
34 https://github.com/aquasecurity/trivy
33 https://scout.docker.com/vulnerabilities/id/CVE-2024-6119
32 https://scout.docker.com/vulnerabilities/id/CVE-2024-5535
31 https://hub.docker.com/layers/library/alpine/3.19.0/images/sha256-13b[...]bcd

7ASecurity © 2024
 14

https://github.com/linkerd/linkerd2-proxy-init/blob/fb9c51e2e39583068b7b0099209e1aa6d117b741/cni-repair-controller/integration/linkerd-cni-config.yml
https://docs.snyk.io/scan-with-snyk/snyk-container/scan-container-images
https://github.com/aquasecurity/trivy
https://scout.docker.com/vulnerabilities/id/CVE-2024-6119
https://scout.docker.com/vulnerabilities/id/CVE-2024-5535
https://hub.docker.com/layers/library/alpine/3.19.0/images/sha256-13b7e62e8df80264dbb747995705a986aa530415763a6c58f84a3ca8af9a5bcd
https://7asecurity.com

Pentest Report

LNK-01-007 Multiple Vulnerable Dependencies (Low)

It was established that the Linkerd2 codebase makes use of components with publicly
known vulnerabilities. While most of these weaknesses are likely not exploitable under
the current implementation, this is still a bad practice that could result in unwanted
security vulnerabilities. The following table summarizes the publicly known vulnerabilities
affecting packages used either directly or as an underlying dependency.

Component Issues Severity

micromatch <4.0.8 Regular Expression Denial of Service36 Medium

send <0.19.9 Template Injection37 Medium

http-proxy-middleware <2.0.7 Denial of Service38 High

cookie <0.7.0 Cookies with Out-of-Bound Characters39 High

This issue was confirmed by reviewing the following file:

Affected File:
https://github.com/linkerd/linkerd2/blob/[...]/web/app/yarn.lock

Affected Code:​​​
micromatch@4.0.2:

 version "4.0.2"

 resolved

"https://registry.yarnpkg.com/micromatch/-/micromatch-4.0.2.tgz#4fcb0999bf9fbc2fcbdd212

f6d629b9a56c39259"​
[...]

send@0.18.0:

 version "0.18.0"

 resolved

"https://registry.yarnpkg.com/send/-/send-0.18.0.tgz#670167cc654b05f5aa4a767f9113bb371b

c706be"

[...]

http-proxy-middleware@^2.0.3:

 version "2.0.4"

 resolved

"https://registry.yarnpkg.com/http-proxy-middleware/-/http-proxy-middleware-2.0.4.tgz#0

3af0f4676d172ae775cb5c33f592f40e1a4e07a"

39 https://www.npmjs.com/advisories/1099846
38 https://www.npmjs.com/advisories/1100223
37 https://www.npmjs.com/advisories/1099525
36 https://www.npmjs.com/advisories/1098681

7ASecurity © 2024
 15

https://github.com/linkerd/linkerd2/blob/c9791c6bff921b811f7a6884285c15e1ac7febe9/web/app/yarn.lock
https://www.npmjs.com/advisories/1099846
https://www.npmjs.com/advisories/1100223
https://www.npmjs.com/advisories/1099525
https://www.npmjs.com/advisories/1098681
https://7asecurity.com

Pentest Report

[...]

cookie@0.6.0:

 version "0.6.0"

 resolved

"https://registry.yarnpkg.com/cookie/-/cookie-0.6.0.tgz#2798b04b071b0ecbff0dbb62a505a8e

fa4e19051"

It is recommended to upgrade all underlying dependencies to their current versions to
resolve the above issues. To prevent similar issues in the future, an automated task or
commit hook should be implemented to regularly check for vulnerabilities in
dependencies. Suggested solutions include yarn audit40, the Snyk tool41 and the OWASP
Dependency Check project42. Ideally, such tools should be run regularly by an automated
job (e.g. in CI/CD pipeline) that alerts a lead developer or administrator about known
vulnerabilities in dependencies so that the patching process can start in a timely manner.

42 https://owasp.org/www-project-dependency-check/
41 https://snyk.io/
40 https://classic.yarnpkg.com/lang/en/docs/cli/audit/

7ASecurity © 2024
 16

https://owasp.org/www-project-dependency-check/
https://snyk.io/
https://classic.yarnpkg.com/lang/en/docs/cli/audit/
https://7asecurity.com

Pentest Report

Conclusion

The Linkerd2 solution defended itself well against a broad range of attack vectors. The
platform will become increasingly difficult to attack as additional cycles of security testing
and subsequent hardening continue.

The Linkerd2 platform provided a number of positive impressions during this assignment
that must be mentioned here:

●​ Proactive security practices are in place, such as utilizing SAST tools like Gosec
and fuzzing tests, as well as using linters, and automated dependency updates in
GitHub workflows.

●​ Other proactive security measures have been clearly implemented, such as
active evaluation of SAST tool flags, well-reasoned configuration justifications,
and an actively maintained and well-audited codebase with a focus on
addressing security risks.

●​ The Linkerd2 codebase demonstrates its source code is robust and has been
thoroughly audited and enhanced multiple times, which makes uncovering new
security weaknesses particularly challenging, and highlights the value of regular
penetration testing and hardening iterations.

●​ No major vulnerabilities could be found during the engagement, with only a minor
exception noted in an outdated script that was later removed during the test
(LNK-01-003).

The Linkerd2 solution would benefit from addressing the following security issues:
●​ Enhancing Security with TLS 1.3: Enforce TLS 1.3 as the minimum version, to

mitigate cryptographic weaknesses in TLS 1.2, and align with modern standards
(LNK-01-001).

●​ Mitigation of DYLIB Injection: Implementing a hardened runtime, including the
__RESTRICT segment in the Mach-O file for the macOS Linkerd2 CLI, will
prevent malicious library injections, reducing the odds of unauthorized code
execution and system compromise in edge-case scenarios (LNK-01-002).

●​ Default mTLS Enforcement: Enforcing mTLS by default, regardless of
configured authorization policies, will ensure secure communication and further
mitigate Man-In-The-Middle (MitM) attacks against gRPC clients and servers
(LNK-01-005).

●​ Software Patching: The Linkerd2 solution should implement appropriate
software patching procedures which regularly apply security patches in a timely
manner, this applies to Docker images (LNK-01-006), as well as the Linkerd2
project itself (LNK-01-007). In a day and age when most lines of code come from
underlying software dependencies, regularly patching these becomes
increasingly important to avoid unwanted security vulnerabilities. Possible

7ASecurity © 2024
 17

https://7asecurity.com

Pentest Report

automation for this could include tools like Snyk.io43 or Renovate Bot44.

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This will not just strengthen the security posture of the
application significantly, but also reduce the number of tickets in future audits.

Once all issues in this report are addressed and verified, a more thorough review, ideally
including another source code audit, is highly recommended to ensure adequate security
coverage of the platform. This provides auditors with an edge over possible malicious
adversaries that do not have significant time or budget constraints.

Please note that future audits should ideally allow for a greater budget so that test teams
are able to deep dive into more complex attack scenarios. Some examples of this could
be third party integrations, complex features that require to exercise all the application
logic for full visibility, authentication flows, challenge-response mechanisms
implemented, subtle vulnerabilities, logic bugs and complex vulnerabilities derived from
the inner workings of dependencies in the context of the application. Additionally, the
scope could perhaps be extended to include other internet-facing Linkerd2 resources.

It is suggested to test the application regularly, at least once a year or when substantial
changes are going to be deployed, to make sure new features do not introduce
undesired security vulnerabilities. This proven strategy will reduce the number of security
issues consistently and make the application highly resilient against online attacks over
time.

7ASecurity would like to take this opportunity to sincerely thank David McLaughlin,
William Morgan and the rest of the Linkerd2 team, for their exemplary assistance and
support throughout this audit. Last but not least, appreciation must be extended to the
Open Source Technology Improvement Fund (OSTIF) for facilitating and managing this
project, and thank you to CNCF for funding the effort.

44 https://github.com/renovatebot/renovate
43 https://snyk.io/

7ASecurity © 2024
 18

https://github.com/renovatebot/renovate
https://snyk.io/
https://7asecurity.com

	
	Introduction
	Scope
	
	Identified Vulnerabilities
	LNK-01-003 Possible RCE via clear-text HTTP Instructions in Script (High)

	
	Hardening Recommendations
	LNK-01-001 Enhanced Security Against MitM via TLS MinVersion (Info)
	LNK-01-002 Possible DYLIB Injection on MacOS Client (Medium)
	LNK-01-004 Possible WebSocket Hijacking via missing Validation (Low)
	
	LNK-01-005 Possible MitM via Insecure gRPC without TLS (Info)
	
	LNK-01-006 Multiple Vulnerabilities Found in Docker Images (Low)
	
	LNK-01-007 Multiple Vulnerable Dependencies (Low)

	
	Conclusion

