
 Linkerd
 Security Assessment

 February 14, 2022

 Prepared for:

 Oliver Gould

 Linux Foundation

 Prepared by:

 Alex Useche and David Pokora

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 80+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 Linkerd Security Assessment
 CONFIDENTIAL

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2022 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be confidential information; it is licensed to the
 Linux Foundation under the terms of the project statement of work and intended solely for
 internal use by the Linux Foundation. Material within this report may not be reproduced or
 distributed in part or in whole without the express written permission of Trail of Bits.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and mutually agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As such, the findings documented in this
 report should not be considered a comprehensive list of security issues, flaws, or defects in
 the target system or codebase.

 Trail of Bits 2 Linkerd Security Assessment
 CONFIDENTIAL

 Table of Contents

 About Trail of Bits 1

 Notices and Remarks 2

 Table of Contents 2

 Executive Summary 5

 Project Summary 6

 Project Goals 7

 Project Targets 8

 Project Coverage 9

 Summary of Findings 10

 Detailed Findings 11

 1. Various unhandled errors 11

 2. The use of time.After() in select statements can lead to memory leaks 13

 3. Use of string.Contains instead of string.HasPrefix to check for prefixes 14

 4. Risk of resource exhaustion due to the use of defer inside a loop 15

 5. Lack of maximum request and response body constraint 16

 6. Potential goroutine leak in Kubernetes port-forwarding initialization logic 18

 7. Risk of log injection in TAP service API 19

 8. TLS configuration does not enforce minimum TLS version 20

 9. Nil dereferences in the webhook server 22

 A. Vulnerability Categories 24

 B. Code Quality Findings 26

 C. Running GCatch 27

 Trail of Bits 3 Linkerd Security Assessment
 CONFIDENTIAL

 Trail of Bits 4 Linkerd Security Assessment
 CONFIDENTIAL

 Executive Summary

 Engagement Overview
 The Linux Foundation engaged Trail of Bits to review the security of its Linkerd service
 mesh. From January 31 to February 14, 2022, a team of two consultants conducted a
 security review of the client-provided source code, with two person-weeks of effort. Details
 of the project’s timeline, test targets, and coverage are provided in subsequent sections of
 this report.

 Project Scope
 Our testing efforts were focused on the identification of flaws that could result in a
 compromise of confidentiality, integrity, or availability of the target system. We conducted
 this audit with access to the linkerd2 repository and supporting public documentation.

 Summary of Findings
 The audit did not uncover any significant flaws or defects that could impact system
 confidentiality, integrity, or availability. A summary of the findings is provided below.

 EXPOSURE ANALYSIS

 Severity Count

 Low 3

 Informational 4

 Undetermined 2

 CATEGORY BREAKDOWN

 Category Count

 Error Reporting 1

 Timing 1

 Data Validation 2

 Denial of Service 3

 Auditing and Logging 1

 Configuration 1

 Trail of Bits 5 Linkerd Security Assessment
 CONFIDENTIAL

 Project Summary

 Contact Information
 The following managers were associated with this project:

 Dan Guido , Account Manager Cara Pearson , Project Manager
 dan@trailofbits.com cara.pearson@trailofbits.com

 The following engineers were associated with this project:

 Alex Useche , Consultant David Pokora , Consultant
 alex.useche@trailofbits.com david.pokora@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 January 27, 2022 Pre-project kickoff call

 February 7, 2022 Status update meeting #1

 February 14, 2022 Delivery of final report draft and report readout meeting

 March 3, 2022 Delivery of final report

 Trail of Bits 6 Linkerd Security Assessment
 CONFIDENTIAL

mailto:dan@trailofbits.com
mailto:cara.pearson@trailofbits.com
mailto:alex.useche@trailofbits.com
mailto:david.pokora@trailofbits.com

 Project Goals

 The engagement was scoped to provide a security assessment of the Linkerd service mesh.
 Specifically, we sought to answer the following non-exhaustive list of questions:

 ● Are Transport Layer Security (TLS) channels appropriately configured? Is Mutual TLS
 (mTLS) leveraged in a secure fashion across infrastructural components?

 ● Can the service accept connections from untrusted sources? Could an attacker
 pollute the proxy routing paths?

 ● Could the service be used to perform arbitrary message relays to other endpoints?

 ● Is the node configured properly?

 ● Are system secrets vulnerable to data exposure?

 ● Is appropriate data validation performed on server endpoints?

 ● Are metrics appropriately collected for all relevant tasks? Can this be circumvented
 in any way?

 ● Could an attacker perform log injection attacks against the application to trick
 operators into performing undesirable actions?

 ● Could an attacker with access to application containers affect the availability of the
 control plane service?

 ● Do metrics endpoints exposed by the linkerd-viz extensions leak sensitive data?

 ● Could attackers use access to linkerd-viz APIs to perform unauthorized tasks in
 control plane components?

 ● Could malicious developers with rights restricted to the application namespace
 escalate their privileges by using endpoints exposed by proxy servers and control
 plane components?

 Trail of Bits 7 Linkerd Security Assessment
 CONFIDENTIAL

 Project Targets

 The engagement involved a review and testing of the targets listed below.

 linkerd2

 Repository https://github.com/linkerd/linkerd2

 Version Commit 68b63269d952b05cc721581dfa4672ad2e775964

 Type Infrastructure

 Platform UNIX

 Trail of Bits 8 Linkerd Security Assessment
 CONFIDENTIAL

https://github.com/linkerd/linkerd2

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches and their results include the following:

 ● A review of error handling throughout the codebase revealed issues regarding
 unhandled errors (TOB-LNKD-1).

 ● An assessment of attack vectors that could be exploited to use Linkerd as an open
 relay did not reveal any issues.

 ● An analysis of denial-of-service vulnerabilities in the codebase revealed issues
 regarding memory leaks (TOB-LNKD-2 , TOB-LNKD-4 , TOB-LNKD-6).

 ● A review of the TLS connection code revealed that TLS connections using older TLS
 protocol versions are not rejected or verified (TOB-LNK-8); we identified no other
 issues in this area.

 ● Investigations into the use of cryptography outside of TLS code paths did not reveal
 any issues.

 ● An assessment of the codebase’s vulnerability to secondary issues revealed a risk of
 log injection in the TAP service (TOB-LNKD-7).

 ● An analysis of network routing did not reveal any issues.

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. During this project, we were unable to perform comprehensive testing of
 certain system elements, which may warrant further review.

 ● Due to time constraints, we could not fully cover the codebase. The issues that we
 found during this audit resulted from partial coverage of the codebase.

 Trail of Bits 9 Linkerd Security Assessment
 CONFIDENTIAL

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 Various unhandled errors Error Reporting Undetermined

 2 The use of time.After() in select statements can
 lead to memory leaks

 Timing Low

 3 Use of string.Contains instead of string.HasPrefix
 to check for prefixes

 Data Validation Undetermined

 4 Risk of resource exhaustion due to the use of
 defer inside a loop

 Denial of Service Informational

 5 Lack of maximum request and response body
 constraint

 Denial of Service Informational

 6 Potential goroutine leak in Kubernetes
 port-forwarding initialization logic

 Denial of Service Informational

 7 Risk of log injection in TAP service API Auditing and
 Logging

 Low

 8 TLS configuration does not enforce minimum TLS
 version

 Configuration Low

 9 Nil dereference in the webhook server Data Validation Informational

 Trail of Bits 10 Linkerd Security Assessment
 CONFIDENTIAL

 Detailed Findings

 1. Various unhandled errors

 Severity: Undetermined Difficulty: High

 Type: Error Reporting Finding ID: TOB-LNKD-1

 Target: Various

 Description
 The linkerd codebase contains various methods with unhandled errors. In most cases,
 errors returned by functions are simply not checked; in other cases, functions that
 surround deferred error-returning functions do not capture the relevant errors.

 Using gosec and errcheck , we detected a large number of such cases, which we cannot
 enumerate in this report. We recommend running these tools to uncover and resolve these
 cases.

 Figures 1.1 and 1.2 provide examples of functions in the codebase with unhandled errors:

 func (h *handler) handleProfileDownload(w http.ResponseWriter, req *http.Request, params
 httprouter.Params) {
 [...]

 w.Write(profileYaml.Bytes())
 }

 Figure 1.1: web/srv/handlers.go#L65-L91

 func renderStatStats(rows []*pb.StatTable_PodGroup_Row, options *statOptions) string {
 [...]

 writeStatsToBuffer(rows, w, options)
 w.Flush()

 [...]
 }

 Figure 1.2: viz/cmd/stat.go#L295-L302

 We could not determine the severity of all of the unhandled errors detected in the
 codebase.

 Exploit Scenario
 While an operator of the Linkerd infrastructure interacts with the system, an uncaught
 error occurs. Due to the lack of error reporting, the operator is unaware that the operation
 did not complete successfully, and he produces further undefined behavior.

 Trail of Bits 11 Linkerd Security Assessment
 CONFIDENTIAL

https://github.com/securego/gosec
https://github.com/kisielk/errcheck
https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/web/srv/handlers.go#L65-L91
https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/viz/cmd/stat.go#L295-L302

 Recommendations
 Short term, run gosec and errcheck across the codebase. Resolve all issues pertaining to
 unhandled errors by checking them explicitly.

 Long term, ensure that all functions that return errors have explicit checks for these errors.
 Consider integrating the abovementioned tooling into the CI/CD pipeline to prevent
 undefined behavior from occurring in the affected code paths.

 Trail of Bits 12 Linkerd Security Assessment
 CONFIDENTIAL

https://github.com/securego/gosec
https://github.com/kisielk/errcheck

 2. The use of time.After() in select statements can lead to memory leaks

 Severity: Low Difficulty: High

 Type: Timing Finding ID: TOB-LNKD-2

 Target: cli/cmd/metrics_diagnostics_util.go

 Description
 Calls to time.After in for/select statements can lead to memory leaks because the
 garbage collector does not clean up the underlying Timer object until the timer fires. A new
 timer, which requires resources, is initialized at each iteration of the for loop (and, hence,
 the select statement). As a result, many routines originating from the time.After call
 could lead to overconsumption of the memory.

 wait:
 for {

 select {
 case result := <-resultChan:

 results = append (results, result)
 case <-time.After(waitingTime):

 break wait // timed out
 }
 if atomic.LoadInt32(&activeRoutines) == 0 {

 break
 }

 }

 Figure 2.1: cli/cmd/metrics_diagnostics_util.go#L131-L142

 Recommendations
 Short term, consider refactoring the code that uses the time.After function in
 for/select loops using tickers. This will prevent memory leaks and crashes caused by
 memory exhaustion.

 Long term, ensure that the time.After method is not used in for/select routines.
 Periodically use the Semgrep query to check for and detect similar patterns.

 References
 ● Use with caution time.After Can cause memory leak (golang)

 ● Golang <-time.After() is not garbage collected before expiry

 Trail of Bits 13 Linkerd Security Assessment
 CONFIDENTIAL

https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/cli/cmd/metrics_diagnostics_util.go#L131-L142
https://developpaper.com/use-with-caution-time-after-can-cause-memory-leak-golang/
https://medium.com/@oboturov/golang-time-after-is-not-garbage-collected-4cbc94740082

 3. Use of string.Contains instead of string.HasPrefix to check for prefixes

 Severity: Undetermined Difficulty: Undetermined

 Type: Data Validation Finding ID: TOB-LNKD-3

 Target: multicluster/service-mirror/events_formatting.go

 Description
 When formatting event metadata, the formatMetadata method checks whether a given
 string in the metadata map contains a given prefix. However, rather than using
 string.HasPrefix to perform this check, it uses string.Contains , which returns true
 if the given prefix string is located anywhere in the target string.

 for k, v := range meta {
 if strings.Contains(k, consts.Prefix) || strings.Contains(k,

 consts.ProxyConfigAnnotationsPrefix) {
 metadata = append(metadata, fmt.Sprintf("%s=%s", k, v))

 }
 }

 Figure 3.1: multicluster/service-mirror/events_formatting.go#L23-L27

 Recommendations
 Short term, refactor the prefix checks to use string.HasPrefix rather than
 string.Contains . This will ensure that prefixes within strings are properly validated.

 Trail of Bits 14 Linkerd Security Assessment
 CONFIDENTIAL

https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/multicluster/service-mirror/events_formatting.go#L23-L27

 4. Risk of resource exhaustion due to the use of defer inside a loop

 Severity: Informational Difficulty: High

 Type: Denial of Service Finding ID: TOB-LNKD-4

 Target: pkg/healthcheck/healthcheck.go

 Description
 The runCheck function, responsible for performing health checks for various services,
 performs its core functions inside of an infinite for loop. runCheck is called with a timeout
 stored in a context object. The cancel() function is deferred at the beginning of the
 loop. Calling defer inside of a loop could cause resource exhaustion conditions because
 the deferred function is called when the function exits, not at the end of each loop. As a
 result, resources from each context object are accumulated until the end of the for
 statement. While this may not cause noticeable issues in the current state of the the
 application, it is best to call cancel() at the end of each loop to prevent unforeseen
 issues.

 func (hc *HealthChecker) runCheck(category *Category, c *Checker, observer CheckObserver)
 bool {

 for {
 ctx, cancel := context.WithTimeout(context.Background(), RequestTimeout)
 defer cancel()
 err := c.check(ctx)
 if se, ok := err.(*SkipError); ok {

 log.Debugf("Skipping check: %s. Reason: %s" , c.description, se.Reason)
 return true

 }

 Figure 4.1: pkg/healthcheck/healthcheck.go#L1619-L1628

 Recommendations
 Short term, rather than deferring the call to cancel() , add a call to cancel() at the end
 of the loop.

 Trail of Bits 15 Linkerd Security Assessment
 CONFIDENTIAL

https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/pkg/healthcheck/healthcheck.go#L1619-L1628

 5. Lack of maximum request and response body constraint

 Severity: Informational Difficulty: High

 Type: Denial of Service Finding ID: TOB-LNKD-5

 Target: Various APIs

 Description
 The ioutil.ReadAll function reads from source until an error or an end-of-file (EOF)
 condition occurs, at which point it returns the data that it read. There is no limit on the
 maximum size of request and response bodies, so using ioutil.ReadAll to parse
 requests and responses could cause a denial of service (due to insufficient memory). A
 denial of service could also occur if an exhaustive resource is loaded multiple times. This
 method is used in the following locations of the codebase:

 File Purpose

 controller/heartbeat/heartbeat.go:239 Reads responses for heartbeat requests

 pkg/profiles/openapi.go:32 Reads the body of file for the profile
 command

 pkg/version/channels.go:83 Reads responses from requests for
 obtaining Linkerd versions

 controller/webhook/server.go:124 Reads requests for the webhook and
 metrics servers

 pkg/protohttp/protohttp.go:48 Reads all requests sent to the metrics
 and TAP APIs

 pkg/protohttp/protohttp.go:170 Reads error responses from the metrics
 and TAP APIs

 In the case of pkg/protohttp/protohttp.go , the readAll function can be called to
 read POST requests, making it easier for an attacker to exploit the misuse of the ReadAll
 function.

 Recommendations
 Short term, place a limit on the maximum size of request and response bodies. For
 example, this limitation can be implemented by using the io.LimitReader function.

 Trail of Bits 16 Linkerd Security Assessment
 CONFIDENTIAL

https://pkg.go.dev/io#LimitReader

 Long term, place limits on request and response bodies globally in other places within the
 application to prevent denial-of-service attacks.

 Trail of Bits 17 Linkerd Security Assessment
 CONFIDENTIAL

 6. Potential goroutine leak in Kubernetes port-forwarding initialization logic

 Severity: Informational Difficulty: High

 Type: Denial of Service Finding ID: TOB-LNKD-6

 Target: pkg/healthcheck/healthcheck.go

 Description
 The Init function responsible for initializing port-forwarding connections for Kubernetes
 causes a goroutine leak when connections succeed. This is because the failure channel
 in the Init function is set up as an unbuffered channel. Consequently, the failure
 channel blocks the execution of the anonymous goroutine in which it is used unless an
 error is received from pf.run() . Whenever a message indicating success is received by
 readChan , the Init function returns without first releasing the resources allocated by the
 anonymous goroutine, causing those resources to be leaked.

 func (pf *PortForward) Init() error {
 // (...)
 failure := make (chan error)

 go func () {
 if err := pf.run(); err != nil {

 failure <- err
 }

 }()

 // (...)`
 select {
 case <-pf.readyCh:

 log.Debug("Port forward initialised")
 case err := <-failure:

 log.Debugf("Port forward failed: %v" , err)
 return err

 }

 Figure 6.1: pkg/k8s/portforward.go#L200-L220

 Recommendations
 Short term, make the failure channel a buffered channel of size 1 . That way, the
 goroutine will be cleaned and destroyed when the function returns regardless of which
 case occurs first.

 Long term, run GCatch against goroutine-heavy packages to detect the mishandling of
 channel bugs. Refer to Appendix C for guidance on running GCatch. Basic instances of this
 issue can also be detected by running this Semgrep rule .

 Trail of Bits 18 Linkerd Security Assessment
 CONFIDENTIAL

https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/pkg/k8s/portforward.go#L200-L220
https://github.com/system-pclub/GCatch/tree/master/GCatch
https://github.com/trailofbits/semgrep-rules/blob/main/go/hanging-goroutine.yml

 7. Risk of log injection in TAP service API

 Severity: Low Difficulty: High

 Type: Auditing and Logging Finding ID: TOB-LNKD-7

 Target: viz/tap/api/handlers.go

 Description
 Requests sent to the TAP service API endpoint, /apis/tap , via the POST method are
 handled by the handleTap method. This method parses a namespace and a name
 obtained from the URL of the request. Both the namespace and name variables are then
 used in a log statement for printing debugging messages to standard output. Because both
 fields are user controllable, an attacker could perform log injection attacks by calling such
 API endpoints with a namespace or name with newline indicators, such as \n .

 func (h *handler) handleTap(w http.ResponseWriter, req *http.Request, p httprouter.Params) {
 namespace := p.ByName("namespace")
 name := p.ByName("name")
 resource := ""

 // (...)

 h.log.Debugf("SubjectAccessReview: namespace: %s, resource: %s, name: %s, user: <%s>,
 group: <%s>" ,

 namespace, resource, name, h.usernameHeader, h.groupHeader,
)

 Figure 7.1: viz/tap/api/handlers.go#L106-L125

 Exploit Scenario
 An attacker submits a POST request to the TAP service API using the URL
 /apis/tap.linkerd.io/v1alpha1/watch/myns\nERRO[0000]<attacker’s log
 message>/tap , causing invalid logs to be printed and tricking an operator into falsely
 believing there is a failure.

 Recommendations
 Short term, ensure that all user-controlled input is sanitized before it is used in the logging
 function. Additionally, use the format specifier %q instead of %s to prompt Go to perform
 basic sanitation of strings.

 Trail of Bits 19 Linkerd Security Assessment
 CONFIDENTIAL

https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/viz/tap/api/handlers.go#L106-L125

 8. TLS configuration does not enforce minimum TLS version

 Severity: Low Difficulty: High

 Type: Configuration Finding ID: TOB-LNKD-8

 Targets: controller\webhook\server.go , viz\tap\api\sever.go

 Description
 Transport Layer Security (TLS) is used in multiple locations throughout the codebase. In two
 cases, TLS configurations do not have a minimum version requirement, allowing
 connections from TLS 1.0 upwards. This may leave the webhook and TAP API servers
 vulnerable to protocol downgrade and man-in-the-middle attacks.

 // NewServer returns a new instance of Server
 func NewServer(

 ctx context.Context,
 api *k8s.API,
 addr, certPath string,
 handler Handler,
 component string,

) (*Server, error) {

 [...]
 server := &http.Server{

 Addr: addr,
 TLSConfig: &tls.Config{},

 }

 Figure 8.1: controller/webhook/server.go#L43-L64

 // NewServer creates a new server that implements the Tap APIService.
 func NewServer(

 ctx context.Context,
 addr string,
 k8sAPI *k8s.API,
 grpcTapServer pb.TapServer,
 disableCommonNames bool,

) (*Server, error) {

 [...]
 httpServer := &http.Server{

 Addr: addr,
 TLSConfig: &tls.Config{

 ClientAuth: tls.VerifyClientCertIfGiven,
 ClientCAs: clientCertPool,

 },
 }

 Figure 8.2: viz/tap/api/sever.go#L34-L76

 Trail of Bits 20 Linkerd Security Assessment
 CONFIDENTIAL

https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/controller/webhook/server.go#L43-L64
https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/viz/tap/api/sever.go#L34-L76

 Exploit Scenario
 Due to the lack of minimum TLS version enforcement, certain established connections lack
 sufficient authentication and cryptography. These connections do not protect against
 man-in-the-middle attacks.

 Recommendations
 Short term, review all TLS configurations and ensure the MinVersion field is set to require
 connections to be TLS 1.2 or newer.

 Long term, ensure that all TLS configurations across the codebase enforce a minimum
 version requirement and employ verification where possible.

 Trail of Bits 21 Linkerd Security Assessment
 CONFIDENTIAL

 9. Nil dereferences in the webhook server

 Severity: Informational Difficulty: High

 Type: Data Validation Finding ID: TOB-LNKD-9

 Target: controller/webhook/server.go

 Description
 The webhook server’s processReq function, used for handling admission review requests,
 does not properly validate request objects. As a result, malformed requests result in nil
 dereferences, which cause panics on the server.

 If the server receives a request with a body that cannot be decoded by the decode
 function, shown below, an error is returned, and a panic is triggered when the system
 attempts to access the Request object in line 154. A panic could also occur if request is
 decoded successfully into an AdmissionReview object with a missing Request property.
 In such case, the panic would be triggered in line 162.

 149 func (s *Server) processReq(ctx context.Context, data [] byte)
 *admissionv1beta1.AdmissionReview {
 150 admissionReview, err := decode(data)
 151 if err != nil {
 152 log.Errorf("failed to decode data. Reason: %s" , err)
 153 admissionReview.Response = &admissionv1beta1.AdmissionResponse{
 154 UID: admissionReview.Request.UID ,
 155 Allowed: false ,
 156 Result: &metav1.Status{
 157 Message: err.Error(),
 158 },
 159 }
 160 return admissionReview
 161 }
 162 log.Infof("received admission review request %s" ,
 admissionReview.Request.UID)
 163 log.Debugf("admission request: %+v" , admissionReview.Request)

 Figure 9.1: controller/webhook/server.go#L149-L163

 We tested the panic by getting a shell on a container running in the application namespace
 and issuing the request in figure 9.2. However, the Go server recovers from the panics
 without negatively impacting the application.

 Trail of Bits 22 Linkerd Security Assessment
 CONFIDENTIAL

https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/controller/webhook/server.go#L149-L163

 curl -i -s -k -X $'POST' -H $'Host: 10.100.137.130:443' -H $'Accept: */*' -H

 $'Content-Length: 6' --data-binary $'aaaaaa' $'https://10.100.137.130:443/inject/test

 Figure 9.2: The curl request that causes a panic

 Recommendations
 Short term, add checks to verify that request objects are not nil before and after they are
 decoded.

 Long term, run the invalid-usage-of-modified-variable rule from the Trail of Bits
 set of Semgrep rules in the CI/CD pipeline to detect this type of bug.

 Trail of Bits 23 Linkerd Security Assessment
 CONFIDENTIAL

https://github.com/trailofbits/semgrep-rules/blob/main/go/invalid-usage-of-modified-variable.yml

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 24 Linkerd Security Assessment
 CONFIDENTIAL

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 25 Linkerd Security Assessment
 CONFIDENTIAL

 B. Code Quality Findings

 This appendix lists code quality findings that we identified through a manual review.

 Typo in the filename viz/tap/api/sever.go . The word “sever” should be “server.”

 Use of fmt.Sprintf instead of net.JoinHostPort . In locations in which host names
 and port numbers are joined for a target URI, fmt.Sprintf calls are used to format the
 message instead of net.JoinHostPort .

 ● controller/api/destination/profile_translator.go#L120
 ● controller/api/destination/server.go#L471
 ● controller/api/destination/watcher/endpoints_watcher.go (#L753 ,

 #L813)
 ● controller/api/destination/watcher/k8s.go#L96

 Redundant error handling in various methods. Various methods check whether an error
 is nil before returning it; however, continuing down the code path returns a nil . Instead,
 these methods could return the error whether it is nil or not.

 ● jaeger/cmd/check.go#L76-L79
 ● multicluster/service-mirror/cluster_watcher.go#L1026-L1030
 ● pkg/healthcheck/healthcheck.go#L1510-L1514
 ● viz/cmd/tap.go#L306-L310
 ● viz/pkg/healthcheck/healthcheck.go#L244-L248

 Trail of Bits 26 Linkerd Security Assessment
 CONFIDENTIAL

https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/viz/tap/api/sever.go
https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/controller/api/destination/profile_translator.go#L120
https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/controller/api/destination/server.go#L471
https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/controller/api/destination/watcher/endpoints_watcher.go#L753
https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/controller/api/destination/watcher/endpoints_watcher.go#L753
https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/controller/api/destination/watcher/endpoints_watcher.go#L813
https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/controller/api/destination/watcher/k8s.go#L96
https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/jaeger/cmd/check.go#L76-L79
https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/multicluster/service-mirror/cluster_watcher.go#L1026-L1030
https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/pkg/healthcheck/healthcheck.go#L1510-L1514
https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/viz/cmd/tap.go#L306-L310
https://github.com/linkerd/linkerd2/blob/68b63269d952b05cc721581dfa4672ad2e775964/viz/pkg/healthcheck/healthcheck.go#L244-L248

 C. Running GCatch

 This appendix explains how to use GCatch , a tool that automatically detects concurrency
 bugs in Go. It also includes relevant output generated by GCatch when it is run over Linkerd
 (figure B.1). We omitted from the figure any output pertaining to packages in which no
 issues were detected and to packages that did not compile. Additionally, we replaced the
 prefix of the package paths (/ home/vagrant/go/src/github.com/linkerd) with
 " $LINKERD " in the figure.

 To run GCatch over the Linkerd project, take the following steps:

 1. Clone the GCatch project as a Go package. For example, if your Go root directory
 were ~/go, you would clone the repository to the following package:
 ~/go/src/github.com/system-pclub/GCatch .

 2. Go to the GCatch/GCatch directory and run Installz3.sh and install.sh .

 3. Install the project in the Go root directory and enter the project directory
 (~/go/src/github.com/linkerd/linkerd2).

 4. Run GCatch by using the following command:

 GCatch -path="$(pwd)" -include=github.com/linkerd/$REPO
 -checker=BMOC:unlock:double:conflict:structfield:fatal -r
 -compile-error .

 ----------Bug[1]----------

 Type: BMOC Reason: One or multiple channel operation is blocked.

 -----Blocking at:

 File: /$LINKERD/k8s/portforward.go:207

 -----Path NO. 0 Entry func at: (*github.com/linkerd/linkerd2/pkg/k8s.PortForward).Init

 Call :/$LINKERD/k8s/portforward.go:201:12 '✓'
 ChanMake :/$LINKERD/k8s/portforward.go:203:17 '✓'
 Go :/$LINKERD/k8s/portforward.go:205:2 '✓'
 Select :/$LINKERD/k8s/portforward.go:214:2 '✓'
 Select_case :/$LINKERD/k8s/portforward.go:214:2 '✓'
 Call :/$LINKERD/k8s/portforward.go:216:12 '✓'
 Return :/$LINKERD/k8s/portforward.go:222:2 '✓'
 -----Blocking Path NO. 1

 Call :/$LINKERD/k8s/portforward.go:206:19 '✓'
 If :/$LINKERD/k8s/portforward.go:206:27 '✓'
 Chan_op :/$LINKERD/k8s/portforward.go:207:12 Blocking

 Jump :/$LINKERD/k8s/portforward.go:207:12 '✗'
 Return :/$LINKERD/k8s/portforward.go:207:12 '✗'

 Figure C.1: GCatch results for Linkerd

 Trail of Bits 27 Linkerd Security Assessment
 CONFIDENTIAL

https://github.com/system-pclub/GCatch/

