Add benchmark for attributes (#2781)
Signed-off-by: Bogdan Drutu <bogdandrutu@gmail.com>
This commit is contained in:
parent
964996f538
commit
985eff9360
|
|
@ -0,0 +1,118 @@
|
|||
/*
|
||||
* Copyright The OpenTelemetry Authors
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
package io.opentelemetry.api.common;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.concurrent.TimeUnit;
|
||||
import org.openjdk.jmh.annotations.Benchmark;
|
||||
import org.openjdk.jmh.annotations.BenchmarkMode;
|
||||
import org.openjdk.jmh.annotations.Fork;
|
||||
import org.openjdk.jmh.annotations.Measurement;
|
||||
import org.openjdk.jmh.annotations.Mode;
|
||||
import org.openjdk.jmh.annotations.OutputTimeUnit;
|
||||
import org.openjdk.jmh.annotations.Scope;
|
||||
import org.openjdk.jmh.annotations.State;
|
||||
import org.openjdk.jmh.annotations.Warmup;
|
||||
|
||||
@SuppressWarnings("JavadocMethod")
|
||||
@State(Scope.Thread)
|
||||
public class AttributesBenchmark {
|
||||
|
||||
// pre-allocate the keys & values to remove one possible confounding factor
|
||||
private static final List<AttributeKey<String>> keys = new ArrayList<>(10);
|
||||
private static final List<String> values = new ArrayList<>(10);
|
||||
|
||||
static {
|
||||
for (int i = 0; i < 10; i++) {
|
||||
keys.add(AttributeKey.stringKey("key" + i));
|
||||
values.add("value" + i);
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
@BenchmarkMode({Mode.AverageTime})
|
||||
@Fork(1)
|
||||
@Measurement(iterations = 15, time = 1)
|
||||
@OutputTimeUnit(TimeUnit.NANOSECONDS)
|
||||
@Warmup(iterations = 5, time = 1)
|
||||
public Attributes ofOne() {
|
||||
return Attributes.of(keys.get(0), values.get(0));
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
@BenchmarkMode({Mode.AverageTime})
|
||||
@Fork(1)
|
||||
@Measurement(iterations = 15, time = 1)
|
||||
@OutputTimeUnit(TimeUnit.NANOSECONDS)
|
||||
@Warmup(iterations = 5, time = 1)
|
||||
public Attributes ofTwo() {
|
||||
return Attributes.of(keys.get(0), values.get(0), keys.get(1), values.get(1));
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
@BenchmarkMode({Mode.AverageTime})
|
||||
@Fork(1)
|
||||
@Measurement(iterations = 15, time = 1)
|
||||
@OutputTimeUnit(TimeUnit.NANOSECONDS)
|
||||
@Warmup(iterations = 5, time = 1)
|
||||
public Attributes ofThree() {
|
||||
return Attributes.of(
|
||||
keys.get(0), values.get(0), keys.get(1), values.get(1), keys.get(2), values.get(2));
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
@BenchmarkMode({Mode.AverageTime})
|
||||
@Fork(1)
|
||||
@Measurement(iterations = 15, time = 1)
|
||||
@OutputTimeUnit(TimeUnit.NANOSECONDS)
|
||||
@Warmup(iterations = 5, time = 1)
|
||||
public Attributes ofFour() {
|
||||
return Attributes.of(
|
||||
keys.get(0),
|
||||
values.get(0),
|
||||
keys.get(1),
|
||||
values.get(1),
|
||||
keys.get(2),
|
||||
values.get(2),
|
||||
keys.get(3),
|
||||
values.get(3));
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
@BenchmarkMode({Mode.AverageTime})
|
||||
@Fork(1)
|
||||
@Measurement(iterations = 15, time = 1)
|
||||
@OutputTimeUnit(TimeUnit.NANOSECONDS)
|
||||
@Warmup(iterations = 5, time = 1)
|
||||
public Attributes ofFive() {
|
||||
return Attributes.of(
|
||||
keys.get(0),
|
||||
values.get(0),
|
||||
keys.get(1),
|
||||
values.get(1),
|
||||
keys.get(2),
|
||||
values.get(2),
|
||||
keys.get(3),
|
||||
values.get(3),
|
||||
keys.get(4),
|
||||
values.get(4));
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
@BenchmarkMode({Mode.AverageTime})
|
||||
@Fork(1)
|
||||
@Measurement(iterations = 15, time = 1)
|
||||
@OutputTimeUnit(TimeUnit.NANOSECONDS)
|
||||
@Warmup(iterations = 5, time = 1)
|
||||
public Attributes builderTenItems() {
|
||||
AttributesBuilder attributesBuilder = Attributes.builder();
|
||||
for (int i = 0; i < 10; i++) {
|
||||
attributesBuilder.put(keys.get(i), values.get(i));
|
||||
}
|
||||
return attributesBuilder.build();
|
||||
}
|
||||
}
|
||||
Loading…
Reference in New Issue