# Processor API Guide The processor has two responsibilities: choosing which aggregator to choose for a metric instrument and store the last record for each metric ready to be exported. ## Selecting a specific aggregator for metrics Sometimes you may want to use a specific aggregator for one of your metric, export an average of the last X values instead of just the last one. Here is what an aggregator that does that would look like: ```ts import { Aggregator } from '@opentelemetry/sdk-metrics-base'; import { hrTime } from '@opentelemetry/core'; export class AverageAggregator implements Aggregator { private _values: number[] = []; private _limit: number; constructor (limit?: number) { this._limit = limit ?? 10; } update (value: number) { this._values.push(value); if (this._values.length >= this._limit) { this._values = this._values.slice(0, 10); } } toPoint() { const sum =this._values.reduce((agg, value) => { agg += value; return agg; }, 0); return { value: this._values.length > 0 ? sum / this._values.length : 0, timestamp: hrTime(), } } } ``` Now we will need to implement our own processor to configure the sdk to use our new aggregator. To simplify even more, we will just extend the `UngroupedProcessor` (which is the default) to avoid re-implementing the whole `Aggregator` interface. Here the result: ```ts import { UngroupedProcessor, MetricDescriptor, CounterSumAggregator, ObserverAggregator, MeasureExactAggregator, } from '@opentelemetry/sdk-metrics-base'; export class CustomProcessor extends UngroupedProcessor { aggregatorFor (metricDescriptor: MetricDescriptor) { if (metricDescriptor.name === 'requests') { return new AverageAggregator(10); } // this is exactly what the "UngroupedProcessor" does, we will re-use it // to fallback on the default behavior switch (metricDescriptor.metricKind) { case MetricKind.COUNTER: return new CounterSumAggregator(); case MetricKind.OBSERVER: return new ObserverAggregator(); default: return new MeasureExactAggregator(); } } } ``` Finally, we need to specify to the `MeterProvider` to use our `CustomProcessor` when creating new meter: ```ts import { UngroupedProcessor, MetricDescriptor, CounterSumAggregator, ObserverAggregator, MeasureExactAggregator, MeterProvider, Aggregator, } from '@opentelemetry/sdk-metrics-base'; import { hrTime } from '@opentelemetry/core'; export class AverageAggregator implements Aggregator { private _values: number[] = []; private _limit: number; constructor (limit?: number) { this._limit = limit ?? 10; } update (value: number) { this._values.push(value); if (this._values.length >= this._limit) { this._values = this._values.slice(0, 10); } } toPoint() { const sum =this._values.reduce((agg, value) => { agg += value; return agg; }, 0); return { value: this._values.length > 0 ? sum / this._values.length : 0, timestamp: hrTime(), } } } export class CustomProcessor extends UngroupedProcessor { aggregatorFor (metricDescriptor: MetricDescriptor) { if (metricDescriptor.name === 'requests') { return new AverageAggregator(10); } // this is exactly what the "UngroupedProcessor" does, we will re-use it // to fallback on the default behavior switch (metricDescriptor.metricKind) { case MetricKind.COUNTER: return new CounterSumAggregator(); case MetricKind.OBSERVER: return new ObserverAggregator(); default: return new MeasureExactAggregator(); } } } const meter = new MeterProvider({ processor: new CustomProcessor(), interval: 1000, }).getMeter('example-custom-processor'); const requestsLatency = meter.createHistogram('requests', { monotonic: true, description: 'Average latency' }); ```