opentelemetry-python-contrib/instrumentation/opentelemetry-instrumentati.../tests/bedrock_utils.py

378 lines
12 KiB
Python

# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import json
from typing import Any
from botocore.response import StreamingBody
from opentelemetry.instrumentation.botocore.extensions.bedrock import (
_GEN_AI_CLIENT_OPERATION_DURATION_BUCKETS,
_GEN_AI_CLIENT_TOKEN_USAGE_BUCKETS,
)
from opentelemetry.sdk.metrics._internal.point import ResourceMetrics
from opentelemetry.sdk.trace import ReadableSpan
from opentelemetry.semconv._incubating.attributes import (
event_attributes as EventAttributes,
)
from opentelemetry.semconv._incubating.attributes import (
gen_ai_attributes as GenAIAttributes,
)
from opentelemetry.semconv._incubating.attributes.error_attributes import (
ERROR_TYPE,
)
from opentelemetry.semconv._incubating.metrics.gen_ai_metrics import (
GEN_AI_CLIENT_OPERATION_DURATION,
GEN_AI_CLIENT_TOKEN_USAGE,
)
# pylint: disable=too-many-branches, too-many-locals
def assert_completion_attributes_from_streaming_body(
span: ReadableSpan,
request_model: str,
response: StreamingBody | None,
operation_name: str = "chat",
request_top_p: int | None = None,
request_temperature: int | None = None,
request_max_tokens: int | None = None,
request_stop_sequences: list[str] | None = None,
):
input_tokens = None
output_tokens = None
finish_reason = None
if response is not None:
original_body = response["body"]
body_content = original_body.read()
response = json.loads(body_content.decode("utf-8"))
assert response
if "amazon.titan" in request_model:
input_tokens = response.get("inputTextTokenCount")
results = response.get("results")
if results:
first_result = results[0]
output_tokens = first_result.get("tokenCount")
finish_reason = (first_result["completionReason"],)
elif "amazon.nova" in request_model:
if usage := response.get("usage"):
input_tokens = usage["inputTokens"]
output_tokens = usage["outputTokens"]
else:
input_tokens, output_tokens = None, None
if "stopReason" in response:
finish_reason = (response["stopReason"],)
else:
finish_reason = None
elif "anthropic.claude" in request_model:
if usage := response.get("usage"):
input_tokens = usage["input_tokens"]
output_tokens = usage["output_tokens"]
else:
input_tokens, output_tokens = None, None
if "stop_reason" in response:
finish_reason = (response["stop_reason"],)
else:
finish_reason = None
return assert_all_attributes(
span,
request_model,
input_tokens,
output_tokens,
finish_reason,
operation_name,
request_top_p,
request_temperature,
request_max_tokens,
tuple(request_stop_sequences)
if request_stop_sequences is not None
else request_stop_sequences,
)
def assert_converse_completion_attributes(
span: ReadableSpan,
request_model: str,
response: dict[str, Any] | None,
operation_name: str = "chat",
request_top_p: int | None = None,
request_temperature: int | None = None,
request_max_tokens: int | None = None,
request_stop_sequences: list[str] | None = None,
):
if usage := (response and response.get("usage")):
input_tokens = usage["inputTokens"]
output_tokens = usage["outputTokens"]
else:
input_tokens, output_tokens = None, None
if response and "stopReason" in response:
finish_reason = (response["stopReason"],)
else:
finish_reason = None
return assert_all_attributes(
span,
request_model,
input_tokens,
output_tokens,
finish_reason,
operation_name,
request_top_p,
request_temperature,
request_max_tokens,
tuple(request_stop_sequences)
if request_stop_sequences is not None
else request_stop_sequences,
)
def assert_stream_completion_attributes(
span: ReadableSpan,
request_model: str,
input_tokens: int | None = None,
output_tokens: int | None = None,
finish_reason: tuple[str] | None = None,
operation_name: str = "chat",
request_top_p: int | None = None,
request_temperature: int | None = None,
request_max_tokens: int | None = None,
request_stop_sequences: list[str] | None = None,
):
return assert_all_attributes(
span,
request_model,
input_tokens,
output_tokens,
finish_reason,
operation_name,
request_top_p,
request_temperature,
request_max_tokens,
tuple(request_stop_sequences)
if request_stop_sequences is not None
else request_stop_sequences,
)
def assert_equal_or_not_present(value, attribute_name, span):
if value is not None:
assert attribute_name in span.attributes
assert value == span.attributes[attribute_name], span.attributes[
attribute_name
]
else:
assert attribute_name not in span.attributes, attribute_name
def assert_all_attributes(
span: ReadableSpan,
request_model: str,
input_tokens: int | None = None,
output_tokens: int | None = None,
finish_reason: tuple[str] | None = None,
operation_name: str = "chat",
request_top_p: int | None = None,
request_temperature: int | None = None,
request_max_tokens: int | None = None,
request_stop_sequences: tuple[str] | None = None,
):
assert span.name == f"{operation_name} {request_model}"
assert (
operation_name
== span.attributes[GenAIAttributes.GEN_AI_OPERATION_NAME]
)
assert (
GenAIAttributes.GenAiSystemValues.AWS_BEDROCK.value
== span.attributes[GenAIAttributes.GEN_AI_SYSTEM]
)
assert (
request_model == span.attributes[GenAIAttributes.GEN_AI_REQUEST_MODEL]
)
assert_equal_or_not_present(
input_tokens, GenAIAttributes.GEN_AI_USAGE_INPUT_TOKENS, span
)
assert_equal_or_not_present(
output_tokens, GenAIAttributes.GEN_AI_USAGE_OUTPUT_TOKENS, span
)
assert_equal_or_not_present(
finish_reason, GenAIAttributes.GEN_AI_RESPONSE_FINISH_REASONS, span
)
assert_equal_or_not_present(
request_top_p, GenAIAttributes.GEN_AI_REQUEST_TOP_P, span
)
assert_equal_or_not_present(
request_temperature, GenAIAttributes.GEN_AI_REQUEST_TEMPERATURE, span
)
assert_equal_or_not_present(
request_max_tokens, GenAIAttributes.GEN_AI_REQUEST_MAX_TOKENS, span
)
assert_equal_or_not_present(
request_stop_sequences,
GenAIAttributes.GEN_AI_REQUEST_STOP_SEQUENCES,
span,
)
def remove_none_values(body):
result = {}
for key, value in body.items():
if value is None:
continue
if isinstance(value, dict):
result[key] = remove_none_values(value)
elif isinstance(value, list):
result[key] = [remove_none_values(i) for i in value]
else:
result[key] = value
return result
def assert_log_parent(log, span):
if span:
assert log.log_record.trace_id == span.get_span_context().trace_id
assert log.log_record.span_id == span.get_span_context().span_id
assert (
log.log_record.trace_flags == span.get_span_context().trace_flags
)
def assert_message_in_logs(log, event_name, expected_content, parent_span):
assert (
log.log_record.attributes[EventAttributes.EVENT_NAME] == event_name
), log.log_record.attributes[EventAttributes.EVENT_NAME]
assert (
log.log_record.attributes[GenAIAttributes.GEN_AI_SYSTEM]
== GenAIAttributes.GenAiSystemValues.AWS_BEDROCK.value
)
if not expected_content:
assert not log.log_record.body
else:
assert log.log_record.body
assert dict(log.log_record.body) == remove_none_values(
expected_content
), dict(log.log_record.body)
assert_log_parent(log, parent_span)
def assert_all_metric_attributes(
data_point, operation_name: str, model: str, error_type: str | None = None
):
assert GenAIAttributes.GEN_AI_OPERATION_NAME in data_point.attributes
assert (
data_point.attributes[GenAIAttributes.GEN_AI_OPERATION_NAME]
== operation_name
)
assert GenAIAttributes.GEN_AI_SYSTEM in data_point.attributes
assert (
data_point.attributes[GenAIAttributes.GEN_AI_SYSTEM]
== GenAIAttributes.GenAiSystemValues.AWS_BEDROCK.value
)
assert GenAIAttributes.GEN_AI_REQUEST_MODEL in data_point.attributes
assert data_point.attributes[GenAIAttributes.GEN_AI_REQUEST_MODEL] == model
if error_type is not None:
assert ERROR_TYPE in data_point.attributes
assert data_point.attributes[ERROR_TYPE] == error_type
else:
assert ERROR_TYPE not in data_point.attributes
def assert_metrics(
resource_metrics: ResourceMetrics,
operation_name: str,
model: str,
input_tokens: float | None = None,
output_tokens: float | None = None,
error_type: str | None = None,
):
assert len(resource_metrics) == 1
metric_data = resource_metrics[0].scope_metrics[0].metrics
if input_tokens is not None or output_tokens is not None:
expected_metrics_data_len = 2
else:
expected_metrics_data_len = 1
assert len(metric_data) == expected_metrics_data_len
duration_metric = next(
(m for m in metric_data if m.name == GEN_AI_CLIENT_OPERATION_DURATION),
None,
)
assert duration_metric is not None
duration_point = duration_metric.data.data_points[0]
assert duration_point.sum > 0
assert_all_metric_attributes(
duration_point, operation_name, model, error_type
)
assert duration_point.explicit_bounds == tuple(
_GEN_AI_CLIENT_OPERATION_DURATION_BUCKETS
)
if input_tokens is not None:
token_usage_metric = next(
(m for m in metric_data if m.name == GEN_AI_CLIENT_TOKEN_USAGE),
None,
)
assert token_usage_metric is not None
input_token_usage = next(
(
d
for d in token_usage_metric.data.data_points
if d.attributes[GenAIAttributes.GEN_AI_TOKEN_TYPE]
== GenAIAttributes.GenAiTokenTypeValues.INPUT.value
),
None,
)
assert input_token_usage is not None
assert input_token_usage.sum == input_tokens
assert input_token_usage.explicit_bounds == tuple(
_GEN_AI_CLIENT_TOKEN_USAGE_BUCKETS
)
assert_all_metric_attributes(input_token_usage, operation_name, model)
if output_tokens is not None:
token_usage_metric = next(
(m for m in metric_data if m.name == GEN_AI_CLIENT_TOKEN_USAGE),
None,
)
assert token_usage_metric is not None
output_token_usage = next(
(
d
for d in token_usage_metric.data.data_points
if d.attributes[GenAIAttributes.GEN_AI_TOKEN_TYPE]
== GenAIAttributes.GenAiTokenTypeValues.COMPLETION.value
),
None,
)
assert output_token_usage is not None
assert output_token_usage.sum == output_tokens
assert output_token_usage.explicit_bounds == tuple(
_GEN_AI_CLIENT_TOKEN_USAGE_BUCKETS
)
assert_all_metric_attributes(output_token_usage, operation_name, model)