160 lines
5.8 KiB
Python
160 lines
5.8 KiB
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for example_model.py.
|
|
|
|
It also serves as an example of how to use fairness indicators with a Keras
|
|
model.
|
|
"""
|
|
|
|
import datetime
|
|
import os
|
|
import tempfile
|
|
|
|
import numpy as np
|
|
import six
|
|
import tensorflow.compat.v1 as tf
|
|
import tensorflow_model_analysis as tfma
|
|
from google.protobuf import text_format
|
|
from tensorflow import keras
|
|
|
|
from fairness_indicators import example_model
|
|
|
|
tf.compat.v1.enable_eager_execution()
|
|
|
|
|
|
class ExampleModelTest(tf.test.TestCase):
|
|
def setUp(self):
|
|
super(ExampleModelTest, self).setUp()
|
|
self._base_dir = tempfile.gettempdir()
|
|
|
|
self._model_dir = os.path.join(
|
|
self._base_dir, "train", datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
|
)
|
|
|
|
def _create_example(self, comment_text, label, slice_value):
|
|
example = tf.train.Example()
|
|
example.features.feature[example_model.TEXT_FEATURE].bytes_list.value[:] = [
|
|
six.ensure_binary(comment_text, "utf8")
|
|
]
|
|
example.features.feature[example_model.SLICE].bytes_list.value[:] = [
|
|
six.ensure_binary(slice_value, "utf8")
|
|
]
|
|
example.features.feature[example_model.LABEL].float_list.value[:] = [label]
|
|
return example
|
|
|
|
def _create_data(self):
|
|
examples = []
|
|
examples.append(self._create_example("test comment", 0.0, "slice1"))
|
|
examples.append(self._create_example("toxic comment", 1.0, "slice1"))
|
|
examples.append(self._create_example("non-toxic comment", 0.0, "slice1"))
|
|
examples.append(self._create_example("test comment", 1.0, "slice2"))
|
|
examples.append(self._create_example("non-toxic comment", 0.0, "slice2"))
|
|
examples.append(self._create_example("test comment", 0.0, "slice3"))
|
|
examples.append(self._create_example("toxic comment", 1.0, "slice3"))
|
|
examples.append(self._create_example("toxic comment", 1.0, "slice3"))
|
|
examples.append(self._create_example("non toxic comment", 0.0, "slice3"))
|
|
examples.append(self._create_example("abc", 0.0, "slice1"))
|
|
examples.append(self._create_example("abcdef", 0.0, "slice3"))
|
|
examples.append(self._create_example("random", 0.0, "slice1"))
|
|
return examples
|
|
|
|
def _write_tf_records(self, examples):
|
|
data_location = os.path.join(self._base_dir, "input_data.rio")
|
|
with tf.io.TFRecordWriter(data_location) as writer:
|
|
for example in examples:
|
|
writer.write(example.SerializeToString())
|
|
return data_location
|
|
|
|
def test_example_model(self):
|
|
data = self._create_data()
|
|
classifier = example_model.get_example_model(example_model.TEXT_FEATURE)
|
|
classifier.compile(optimizer=keras.optimizers.Adam(), loss="mse")
|
|
classifier.fit(
|
|
tf.constant([e.SerializeToString() for e in data]),
|
|
np.array(
|
|
[
|
|
e.features.feature[example_model.LABEL].float_list.value[:][0]
|
|
for e in data
|
|
]
|
|
),
|
|
batch_size=1,
|
|
)
|
|
tf.saved_model.save(classifier, self._model_dir)
|
|
|
|
eval_config = text_format.Parse(
|
|
"""
|
|
model_specs {
|
|
signature_name: "serving_default"
|
|
prediction_key: "predictions" # placeholder
|
|
label_key: "toxicity" # placeholder
|
|
}
|
|
slicing_specs {}
|
|
slicing_specs {
|
|
feature_keys: ["slice"]
|
|
}
|
|
metrics_specs {
|
|
metrics {
|
|
class_name: "ExampleCount"
|
|
}
|
|
metrics {
|
|
class_name: "FairnessIndicators"
|
|
}
|
|
}
|
|
""",
|
|
tfma.EvalConfig(),
|
|
)
|
|
|
|
validate_tf_file_path = self._write_tf_records(data)
|
|
tfma_eval_result_path = os.path.join(self._model_dir, "tfma_eval_result")
|
|
example_model.evaluate_model(
|
|
self._model_dir,
|
|
validate_tf_file_path,
|
|
tfma_eval_result_path,
|
|
eval_config,
|
|
)
|
|
|
|
evaluation_results = tfma.load_eval_result(tfma_eval_result_path)
|
|
|
|
expected_slice_keys = [
|
|
(),
|
|
(("slice", "slice1"),),
|
|
(("slice", "slice2"),),
|
|
(("slice", "slice3"),),
|
|
]
|
|
slice_keys = [slice_key for slice_key, _ in evaluation_results.slicing_metrics]
|
|
self.assertEqual(set(expected_slice_keys), set(slice_keys))
|
|
# Verify part of the metrics of fairness indicators
|
|
metric_values = dict(evaluation_results.slicing_metrics)[
|
|
(("slice", "slice1"),)
|
|
][""][""]
|
|
self.assertEqual(metric_values["example_count"], {"doubleValue": 5.0})
|
|
|
|
self.assertEqual(
|
|
metric_values["fairness_indicators_metrics/false_positive_rate@0.1"],
|
|
{"doubleValue": 0.0},
|
|
)
|
|
self.assertEqual(
|
|
metric_values["fairness_indicators_metrics/false_negative_rate@0.1"],
|
|
{"doubleValue": 1.0},
|
|
)
|
|
self.assertEqual(
|
|
metric_values["fairness_indicators_metrics/true_positive_rate@0.1"],
|
|
{"doubleValue": 0.0},
|
|
)
|
|
self.assertEqual(
|
|
metric_values["fairness_indicators_metrics/true_negative_rate@0.1"],
|
|
{"doubleValue": 1.0},
|
|
)
|