|
…
|
||
|---|---|---|
| .. | ||
| colab | ||
| half_plus_two | ||
| image_retraining | ||
| text_embeddings | ||
| text_embeddings_v2 | ||
| README.md | ||
README.md
Examples
Notebooks
colab/wav2vec2_saved_model_finetuning.ipynb
Shows how to fine-tune Wav2Vec2 SavedModel with a language modeling head for Automatic Speech Recognition
colab/text_classification_with_tf_hub_on_kaggle.ipynb
Shows how to solve a problem on Kaggle with TF-Hub.
colab/semantic_similarity_with_tf_hub_universal_encoder.ipynb
Explores text semantic similarity with the Universal Encoder Module.
colab/tf_hub_generative_image_module.ipynb
Explores a generative image module.
colab/action_recognition_with_tf_hub.ipynb
Explores action recognition from video.
colab/tf_hub_delf_module.ipynb
Exemplifies use of the DELF Module for landmark recognition and matching.
colab/object_detection.ipynb
Explores object detection with the use of the Faster R-CNN module trained on Open Images v4.
colab/tf2_semantic_approximate_nearest_neighbors
This tutorial illustrates how to generate embeddings from a TF2 SavedModel given input data and build an approximate nearest neighbours (ANN) index using the extracted embeddings for real-time similarity matching and retrieval.
colab/semantic_approximate_nearest_neighbors
This tutorial illustrates how to generate embeddings from a model in the legacy TF1 Hub format given input data and build an approximate nearest neighbours (ANN) index using the extracted embeddings for real-time similarity matching and retrieval.
Python scripts
image_retraining
Shows how to train an image classifier based on any TensorFlow Hub module that computes image feature vectors.
text_embeddings
Example tool to generate a text embedding module from a csv file with word embeddings.
half_plus_two
Simple example of how to create a TensorFlow Hub Module.
TensorFlow 2
text_embeddings_v2
Example tool to generate a text embedding module in TF2 format.