models/research/slim/scripts/export_mobilenet.sh

133 lines
5.1 KiB
Bash
Executable File

#!/bin/bash
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# This script prepares the various different versions of MobileNet models for
# use in a mobile application. If you don't specify your own trained checkpoint
# file, it will download pretrained checkpoints for ImageNet. You'll also need
# to have a copy of the TensorFlow source code to run some of the commands,
# by default it will be looked for in ./tensorflow, but you can set the
# TENSORFLOW_PATH environment variable before calling the script if your source
# is in a different location.
# The main slim/nets/mobilenet_v1.md description has more details about the
# model, but the main points are that it comes in four size versions, 1.0, 0.75,
# 0.50, and 0.25, which controls the number of parameters and so the file size
# of the model, and the input image size, which can be 224, 192, 160, or 128
# pixels, and affects the amount of computation needed, and the latency.
# Here's an example generating a frozen model from pretrained weights:
#
set -e
print_usage () {
echo "Creates a frozen mobilenet model suitable for mobile use"
echo "Usage:"
echo "$0 <mobilenet version> <input size> [checkpoint path]"
}
MOBILENET_VERSION=$1
IMAGE_SIZE=$2
CHECKPOINT=$3
if [[ ${MOBILENET_VERSION} = "1.0" ]]; then
SLIM_NAME=mobilenet_v1
elif [[ ${MOBILENET_VERSION} = "0.75" ]]; then
SLIM_NAME=mobilenet_v1_075
elif [[ ${MOBILENET_VERSION} = "0.50" ]]; then
SLIM_NAME=mobilenet_v1_050
elif [[ ${MOBILENET_VERSION} = "0.25" ]]; then
SLIM_NAME=mobilenet_v1_025
else
echo "Bad mobilenet version, should be one of 1.0, 0.75, 0.50, or 0.25"
print_usage
exit 1
fi
if [[ ${IMAGE_SIZE} -ne "224" ]] && [[ ${IMAGE_SIZE} -ne "192" ]] && [[ ${IMAGE_SIZE} -ne "160" ]] && [[ ${IMAGE_SIZE} -ne "128" ]]; then
echo "Bad input image size, should be one of 224, 192, 160, or 128"
print_usage
exit 1
fi
if [[ ${TENSORFLOW_PATH} -eq "" ]]; then
TENSORFLOW_PATH=../tensorflow
fi
if [[ ! -d ${TENSORFLOW_PATH} ]]; then
echo "TensorFlow source folder not found. You should download the source and then set"
echo "the TENSORFLOW_PATH environment variable to point to it, like this:"
echo "export TENSORFLOW_PATH=/my/path/to/tensorflow"
print_usage
exit 1
fi
MODEL_FOLDER=/tmp/mobilenet_v1_${MOBILENET_VERSION}_${IMAGE_SIZE}
if [[ -d ${MODEL_FOLDER} ]]; then
echo "Model folder ${MODEL_FOLDER} already exists!"
echo "If you want to overwrite it, then 'rm -rf ${MODEL_FOLDER}' first."
print_usage
exit 1
fi
mkdir ${MODEL_FOLDER}
if [[ ${CHECKPOINT} = "" ]]; then
echo "*******"
echo "Downloading pretrained weights"
echo "*******"
curl "http://download.tensorflow.org/models/mobilenet_v1_${MOBILENET_VERSION}_${IMAGE_SIZE}_2017_06_14.tar.gz" \
-o ${MODEL_FOLDER}/checkpoints.tar.gz
tar xzf ${MODEL_FOLDER}/checkpoints.tar.gz --directory ${MODEL_FOLDER}
CHECKPOINT=${MODEL_FOLDER}/mobilenet_v1_${MOBILENET_VERSION}_${IMAGE_SIZE}.ckpt
fi
echo "*******"
echo "Exporting graph architecture to ${MODEL_FOLDER}/unfrozen_graph.pb"
echo "*******"
bazel run slim:export_inference_graph -- \
--model_name=${SLIM_NAME} --image_size=${IMAGE_SIZE} --logtostderr \
--output_file=${MODEL_FOLDER}/unfrozen_graph.pb --dataset_dir=${MODEL_FOLDER}
cd ../tensorflow
echo "*******"
echo "Freezing graph to ${MODEL_FOLDER}/frozen_graph.pb"
echo "*******"
bazel run tensorflow/python/tools:freeze_graph -- \
--input_graph=${MODEL_FOLDER}/unfrozen_graph.pb \
--input_checkpoint=${CHECKPOINT} \
--input_binary=true --output_graph=${MODEL_FOLDER}/frozen_graph.pb \
--output_node_names=MobilenetV1/Predictions/Reshape_1
echo "Quantizing weights to ${MODEL_FOLDER}/quantized_graph.pb"
bazel run tensorflow/tools/graph_transforms:transform_graph -- \
--in_graph=${MODEL_FOLDER}/frozen_graph.pb \
--out_graph=${MODEL_FOLDER}/quantized_graph.pb \
--inputs=input --outputs=MobilenetV1/Predictions/Reshape_1 \
--transforms='fold_constants fold_batch_norms quantize_weights'
echo "*******"
echo "Running label_image using the graph"
echo "*******"
bazel build tensorflow/examples/label_image:label_image
bazel-bin/tensorflow/examples/label_image/label_image \
--input_layer=input --output_layer=MobilenetV1/Predictions/Reshape_1 \
--graph=${MODEL_FOLDER}/quantized_graph.pb --input_mean=-127 --input_std=127 \
--image=tensorflow/examples/label_image/data/grace_hopper.jpg \
--input_width=${IMAGE_SIZE} --input_height=${IMAGE_SIZE} --labels=${MODEL_FOLDER}/labels.txt
echo "*******"
echo "Saved graphs to ${MODEL_FOLDER}/frozen_graph.pb and ${MODEL_FOLDER}/quantized_graph.pb"
echo "*******"