# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Example showing how to use tfjs binary in python code.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import subprocess def predict(binary_path, model_path, inputs_dir, outputs_dir, backend=None, tf_output_name_file=None): """Use tfjs binary to make inference and store output in file. Args: binary_path: Path to the nodejs binary. The path can be an absolute path (preferred) or a relative path from this python script's current directory. model_path: Directory to TensorFlow.js model's json file. inputs_dir: Directory to the inputs files, including data, shape and dtype files. outputs_dir: Directory to write the outputs files, including data, shape and dtype files. backend: Optional. Choose which TensorFlow.js backend to use. Supported backends include cpu and wasm. Default: cpu tf_output_name_file: Optional. File name of the tf_output_name, if file does not exist, will use the default outputs of the model. """ model_path_option = '--model_path=' + model_path inputs_dir_option = '--inputs_dir=' + inputs_dir outputs_dir_option = '--outputs_dir=' + outputs_dir tfjs_inference_command = [ binary_path, model_path_option, inputs_dir_option, outputs_dir_option ] if tf_output_name_file: tf_output_name_file_option = '--tf_output_name_file=' + tf_output_name_file tfjs_inference_command.append(tf_output_name_file_option) if backend: backend_option = '--backend=' + backend tfjs_inference_command.append(backend_option) popen = subprocess.Popen( tfjs_inference_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = popen.communicate() if popen.returncode != 0: raise ValueError('Inference failed with status %d\nstderr:\n%s' % (popen.returncode, stderr.decode()))