tfjs/e2e/integration_tests/grad_layers_test.ts

54 lines
1.9 KiB
TypeScript

/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import '@tensorflow/tfjs-backend-cpu';
import '@tensorflow/tfjs-backend-webgl';
import '@tensorflow/tfjs-backend-webgpu';
import * as tfc from '@tensorflow/tfjs-core';
// tslint:disable-next-line: no-imports-from-dist
import {Constraints, describeWithFlags} from '@tensorflow/tfjs-core/dist/jasmine_util';
import * as tfl from '@tensorflow/tfjs-layers';
import {SMOKE} from './constants';
// TODO(#6518): Test against wasm as well.
const NOT_WASM: Constraints = {
predicate: testEnv => testEnv.backendName !== 'wasm',
};
/**
* Tests that tf.grad works for layers models.
* Regression test for https://github.com/tensorflow/tfjs/issues/4130
*/
describe(`${SMOKE} tf.grad for layers models`, () => {
describeWithFlags(`layers_model`, NOT_WASM, (env) => {
it(`can compute grad of prediction`, async () => {
await tfc.setBackend(env.name);
const model = tfl.sequential();
model.add(tfl.layers.dense({inputShape: [1], units: 1}));
const forward = (x: tfc.Tensor) => model.predict(x) as tfc.Tensor;
const grad = tfc.grad(forward);
const input = tfc.tensor([1], [1, 1]);
const dy = tfc.onesLike(input);
expect(() => {
grad(input, dy);
}).not.toThrow();
});
});
});