mirror of https://github.com/tensorflow/tfjs.git
157 lines
5.6 KiB
Python
Executable File
157 lines
5.6 KiB
Python
Executable File
# Copyright 2020 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# Run `yarn test-python` in the package root directory.
|
|
# This test only supports running in Linux.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import json
|
|
import os.path
|
|
import tempfile
|
|
import shutil
|
|
|
|
import tensorflow as tf
|
|
|
|
import inference
|
|
|
|
class InferenceTest(tf.test.TestCase):
|
|
|
|
def testInference(self):
|
|
backends = ['cpu', 'wasm']
|
|
for backend in backends:
|
|
binary_path = os.path.join('../binaries', 'tfjs-inference-linux')
|
|
model_path = os.path.join('../test_data', 'model.json')
|
|
test_data_dir = os.path.join('../test_data')
|
|
tmp_dir = tempfile.mkdtemp()
|
|
|
|
inference.predict(binary_path, model_path, test_data_dir, tmp_dir, backend=backend)
|
|
|
|
with open(os.path.join(tmp_dir, 'data.json'), 'rt') as f:
|
|
ys_values = json.load(f)
|
|
|
|
# The output is a list of tensor data in the form of dict.
|
|
# Example output:
|
|
# [{"0":0.7567615509033203,"1":-0.18349379301071167,"2":0.7567615509033203,"3":-0.18349379301071167}]
|
|
ys_values = [list(y.values()) for y in ys_values]
|
|
|
|
with open(os.path.join(tmp_dir, 'shape.json'), 'rt') as f:
|
|
ys_shapes = json.load(f)
|
|
|
|
with open(os.path.join(tmp_dir, 'dtype.json'), 'rt') as f:
|
|
ys_dtypes = json.load(f)
|
|
|
|
self.assertAllClose(ys_values[0], [
|
|
0.7567615509033203, -0.18349379301071167, 0.7567615509033203,
|
|
-0.18349379301071167
|
|
])
|
|
self.assertAllEqual(ys_shapes[0], [2, 2])
|
|
self.assertEqual(ys_dtypes[0], 'float32')
|
|
self.assertFalse(os.path.exists(os.path.join(tmp_dir, 'name.json')))
|
|
# Cleanup tmp dir.
|
|
shutil.rmtree(tmp_dir)
|
|
|
|
# Todo(linazhao): Add a test model that outputs multiple tensors.
|
|
def testInferenceWithOutputNameFile(self):
|
|
binary_path = os.path.join('../binaries', 'tfjs-inference-linux')
|
|
model_path = os.path.join('../test_data', 'model.json')
|
|
test_data_dir = os.path.join('../test_data')
|
|
tmp_dir = tempfile.mkdtemp()
|
|
|
|
inference.predict(binary_path, model_path, test_data_dir, tmp_dir, tf_output_name_file='tf_output_name.json')
|
|
|
|
with open(os.path.join(tmp_dir, 'data.json'), 'rt') as f:
|
|
ys_values = json.load(f)
|
|
|
|
# The output is a list of tensor data in the form of dict.
|
|
# Example output:
|
|
# [{"0":0.7567615509033203,"1":-0.18349379301071167,"2":0.7567615509033203,"3":-0.18349379301071167}]
|
|
ys_values = [list(y.values()) for y in ys_values]
|
|
|
|
with open(os.path.join(tmp_dir, 'shape.json'), 'rt') as f:
|
|
ys_shapes = json.load(f)
|
|
|
|
with open(os.path.join(tmp_dir, 'dtype.json'), 'rt') as f:
|
|
ys_dtypes = json.load(f)
|
|
|
|
self.assertAllClose(ys_values[0], [
|
|
0.7567615509033203, -0.18349379301071167, 0.7567615509033203,
|
|
-0.18349379301071167
|
|
])
|
|
self.assertAllEqual(ys_shapes[0], [2, 2])
|
|
self.assertEqual(ys_dtypes[0], 'float32')
|
|
self.assertFalse(os.path.exists(os.path.join(tmp_dir, 'name.json')))
|
|
# Cleanup tmp dir.
|
|
shutil.rmtree(tmp_dir)
|
|
|
|
def testInferenceWithNonExistingOutputNameFile(self):
|
|
binary_path = os.path.join('../binaries', 'tfjs-inference-linux')
|
|
model_path = os.path.join('../test_data', 'model.json')
|
|
test_data_dir = os.path.join('../test_data')
|
|
tmp_dir = tempfile.mkdtemp()
|
|
|
|
# Throws an error
|
|
with self.assertRaises(ValueError):
|
|
inference.predict(binary_path, model_path, test_data_dir, tmp_dir, tf_output_name_file='non_exist.json')
|
|
|
|
# ...and does not create an output file.
|
|
with self.assertRaises(FileNotFoundError):
|
|
with open(os.path.join(tmp_dir, 'data.json'), 'rt') as f:
|
|
json.load(f)
|
|
|
|
# Cleanup tmp dir.
|
|
shutil.rmtree(tmp_dir)
|
|
|
|
def testInferenceWithStructuredOutputKeys(self):
|
|
backends = ['cpu', 'wasm']
|
|
for backend in backends:
|
|
binary_path = os.path.join('../binaries', 'tfjs-inference-linux')
|
|
model_path = os.path.join('../test_data', 'model_structured_outputs.json')
|
|
test_data_dir = os.path.join('../test_data')
|
|
tmp_dir = tempfile.mkdtemp()
|
|
|
|
inference.predict(binary_path, model_path, test_data_dir, tmp_dir, backend=backend)
|
|
|
|
with open(os.path.join(tmp_dir, 'data.json'), 'rt') as f:
|
|
ys_values = json.load(f)
|
|
|
|
# The output is a list of tensor data in the form of dict.
|
|
# Example output:
|
|
# [{"0":0.7567615509033203,"1":-0.18349379301071167,"2":0.7567615509033203,"3":-0.18349379301071167}]
|
|
ys_values = [list(y.values()) for y in ys_values]
|
|
|
|
with open(os.path.join(tmp_dir, 'shape.json'), 'rt') as f:
|
|
ys_shapes = json.load(f)
|
|
|
|
with open(os.path.join(tmp_dir, 'dtype.json'), 'rt') as f:
|
|
ys_dtypes = json.load(f)
|
|
|
|
with open(os.path.join(tmp_dir, 'name.json'), 'rt') as f:
|
|
ys_names = json.load(f)
|
|
|
|
self.assertAllClose(ys_values[0], [
|
|
0.7567615509033203, -0.18349379301071167, 0.7567615509033203,
|
|
-0.18349379301071167
|
|
])
|
|
self.assertAllEqual(ys_shapes[0], [2, 2])
|
|
self.assertEqual(ys_dtypes[0], 'float32')
|
|
self.assertEqual(ys_names[0], 'testName')
|
|
# Cleanup tmp dir.
|
|
shutil.rmtree(tmp_dir)
|
|
|
|
if __name__ == '__main__':
|
|
tf.test.main()
|