Merge pull request #252 from ekexium/batch-get-for-update

Fix batch_get_for_update
This commit is contained in:
Nick Cameron 2021-04-09 14:19:56 +12:00 committed by GitHub
commit 4870985dcd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 310 additions and 115 deletions

View File

@ -10,8 +10,9 @@ use tikv_client_store::{HasError, Request};
pub use self::{
plan::{
Collect, CollectError, DefaultProcessor, Dispatch, ExtractError, Merge, MergeResponse,
MultiRegion, Plan, Process, ProcessResponse, ResolveLock, RetryRegion,
Collect, CollectAndMatchKey, CollectError, DefaultProcessor, Dispatch, ExtractError,
HasKeys, Merge, MergeResponse, MultiRegion, Plan, PreserveKey, Process, ProcessResponse,
ResolveLock, RetryRegion,
},
plan_builder::{PlanBuilder, SingleKey},
shard::Shardable,

View File

@ -6,11 +6,13 @@ use crate::{
request::{KvRequest, Shardable},
stats::tikv_stats,
transaction::{resolve_locks, HasLocks},
Error, Result,
util::iter::FlatMapOkIterExt,
Error, Key, KvPair, Result, Value,
};
use async_trait::async_trait;
use futures::{prelude::*, stream::StreamExt};
use std::{marker::PhantomData, sync::Arc};
use tikv_client_proto::kvrpcpb;
use tikv_client_store::{HasError, HasRegionError, KvClient};
/// A plan for how to execute a request. A user builds up a plan with various
@ -55,6 +57,12 @@ impl<Req: KvRequest> Plan for Dispatch<Req> {
}
}
impl<Req: KvRequest + HasKeys> HasKeys for Dispatch<Req> {
fn get_keys(&self) -> Vec<Key> {
self.request.get_keys()
}
}
pub struct MultiRegion<P: Plan, PdC: PdClient> {
pub(super) inner: P,
pub pd_client: Arc<PdC>,
@ -123,6 +131,12 @@ impl<In: Clone + Send + Sync + 'static, P: Plan<Result = Vec<Result<In>>>, M: Me
#[derive(Clone, Copy)]
pub struct Collect;
/// A merge strategy to be used with
/// [`preserve_keys`](super::plan_builder::PlanBuilder::preserve_keys).
/// It matches the keys preserved before and the values returned in the response.
#[derive(Clone, Debug)]
pub struct CollectAndMatchKey;
/// A merge strategy which returns an error if any response is an error and
/// otherwise returns a Vec of the results.
#[derive(Clone, Copy)]
@ -256,6 +270,17 @@ where
}
}
impl<P: Plan + HasKeys, PdC: PdClient> HasKeys for ResolveLock<P, PdC> {
fn get_keys(&self) -> Vec<Key> {
self.inner.get_keys()
}
}
/// When executed, the plan extracts errors from its inner plan, and
/// returns an `Err` wrapping the error.
///
/// The errors come from two places: `Err` from inner plans, and `Ok(response)`
/// where `response` contains unresolved errors (`error` and `region_error`).
pub struct ExtractError<P: Plan> {
pub inner: P,
}
@ -268,11 +293,6 @@ impl<P: Plan> Clone for ExtractError<P> {
}
}
/// When executed, the plan extracts errors from its inner plan, and
/// returns an `Err` wrapping the error.
///
/// The errors come from two places: `Err` from inner plans, and `Ok(response)`
/// where `response` contains unresolved errors (`error` and `region_error`).
#[async_trait]
impl<P: Plan> Plan for ExtractError<P>
where
@ -292,6 +312,98 @@ where
}
}
/// When executed, the plan clones the keys and execute its inner plan, then
/// returns `(keys, response)`.
///
/// It's useful when the information of keys are lost in the response but needed
/// for processing.
pub struct PreserveKey<P: Plan + HasKeys> {
pub inner: P,
}
impl<P: Plan + HasKeys> Clone for PreserveKey<P> {
fn clone(&self) -> Self {
PreserveKey {
inner: self.inner.clone(),
}
}
}
#[async_trait]
impl<P> Plan for PreserveKey<P>
where
P: Plan + HasKeys,
{
type Result = ResponseAndKeys<P::Result>;
async fn execute(&self) -> Result<Self::Result> {
let keys = self.inner.get_keys();
let res = self.inner.execute().await?;
Ok(ResponseAndKeys(res, keys))
}
}
pub trait HasKeys {
fn get_keys(&self) -> Vec<Key>;
}
// contains a response and the corresponding keys
// currently only used for matching keys and values in pessimistic lock requests
#[derive(Debug, Clone)]
pub struct ResponseAndKeys<Resp>(Resp, Vec<Key>);
impl<Resp: HasError> HasError for ResponseAndKeys<Resp> {
fn error(&mut self) -> Option<Error> {
self.0.error()
}
}
impl<Resp: HasLocks> HasLocks for ResponseAndKeys<Resp> {
fn take_locks(&mut self) -> Vec<tikv_client_proto::kvrpcpb::LockInfo> {
self.0.take_locks()
}
}
impl<Resp: HasRegionError> HasRegionError for ResponseAndKeys<Resp> {
fn region_error(&mut self) -> Option<Error> {
self.0.region_error()
}
}
impl Merge<ResponseAndKeys<kvrpcpb::PessimisticLockResponse>> for CollectAndMatchKey {
type Out = Vec<KvPair>;
fn merge(
&self,
input: Vec<Result<ResponseAndKeys<kvrpcpb::PessimisticLockResponse>>>,
) -> Result<Self::Out> {
input
.into_iter()
.flat_map_ok(|ResponseAndKeys(mut resp, keys)| {
let values = resp.take_values();
let not_founds = resp.take_not_founds();
let v: Vec<_> = if not_founds.is_empty() {
// Legacy TiKV does not distiguish not existing key and existing key
// that with empty value. We assume that key does not exist if value
// is empty.
let values: Vec<Value> = values.into_iter().filter(|v| v.is_empty()).collect();
keys.into_iter().zip(values).map(From::from).collect()
} else {
assert_eq!(values.len(), not_founds.len());
let values: Vec<Value> = values
.into_iter()
.zip(not_founds.into_iter())
.filter_map(|(v, not_found)| if not_found { None } else { Some(v) })
.collect();
keys.into_iter().zip(values).map(From::from).collect()
};
// FIXME sucks to collect and re-iterate, but the iterators have different types
v.into_iter()
})
.collect()
}
}
#[cfg(test)]
mod test {
use super::*;

View File

@ -1,11 +1,12 @@
// Copyright 2021 TiKV Project Authors. Licensed under Apache-2.0.
use super::PreserveKey;
use crate::{
backoff::Backoff,
pd::PdClient,
request::{
DefaultProcessor, Dispatch, ExtractError, KvRequest, Merge, MergeResponse, MultiRegion,
Plan, Process, ProcessResponse, ResolveLock, RetryRegion, Shardable,
DefaultProcessor, Dispatch, ExtractError, HasKeys, KvRequest, Merge, MergeResponse,
MultiRegion, Plan, Process, ProcessResponse, ResolveLock, RetryRegion, Shardable,
},
store::Store,
transaction::HasLocks,
@ -161,6 +162,19 @@ impl<PdC: PdClient, R: KvRequest> PlanBuilder<PdC, Dispatch<R>, NoTarget> {
}
}
impl<PdC: PdClient, P: Plan + HasKeys> PlanBuilder<PdC, P, NoTarget>
where
P::Result: HasError,
{
pub fn preserve_keys(self) -> PlanBuilder<PdC, PreserveKey<P>, NoTarget> {
PlanBuilder {
pd_client: self.pd_client.clone(),
plan: PreserveKey { inner: self.plan },
phantom: PhantomData,
}
}
}
impl<PdC: PdClient, P: Plan> PlanBuilder<PdC, P, Targetted>
where
P::Result: HasError,

View File

@ -2,13 +2,30 @@
use crate::{
pd::PdClient,
request::{Dispatch, KvRequest, Plan, ResolveLock, RetryRegion},
request::{Dispatch, HasKeys, KvRequest, Plan, PreserveKey, ResolveLock, RetryRegion},
store::Store,
Result,
};
use futures::stream::BoxStream;
use std::sync::Arc;
macro_rules! impl_inner_shardable {
() => {
type Shard = P::Shard;
fn shards(
&self,
pd_client: &Arc<impl PdClient>,
) -> BoxStream<'static, Result<(Self::Shard, Store)>> {
self.inner.shards(pd_client)
}
fn apply_shard(&mut self, shard: Self::Shard, store: &Store) -> Result<()> {
self.inner.apply_shard(shard, store)
}
};
}
pub trait Shardable {
type Shard: Send;
@ -37,33 +54,15 @@ impl<Req: KvRequest + Shardable> Shardable for Dispatch<Req> {
}
impl<P: Plan + Shardable, PdC: PdClient> Shardable for ResolveLock<P, PdC> {
type Shard = P::Shard;
impl_inner_shardable!();
}
fn shards(
&self,
pd_client: &Arc<impl PdClient>,
) -> BoxStream<'static, Result<(Self::Shard, Store)>> {
self.inner.shards(pd_client)
}
fn apply_shard(&mut self, shard: Self::Shard, store: &Store) -> Result<()> {
self.inner.apply_shard(shard, store)
}
impl<P: Plan + HasKeys + Shardable> Shardable for PreserveKey<P> {
impl_inner_shardable!();
}
impl<P: Plan + Shardable, PdC: PdClient> Shardable for RetryRegion<P, PdC> {
type Shard = P::Shard;
fn shards(
&self,
pd_client: &Arc<impl PdClient>,
) -> BoxStream<'static, Result<(Self::Shard, Store)>> {
self.inner.shards(pd_client)
}
fn apply_shard(&mut self, shard: Self::Shard, store: &Store) -> Result<()> {
self.inner.apply_shard(shard, store)
}
impl_inner_shardable!();
}
#[macro_export]

View File

@ -2,7 +2,9 @@
use crate::{
pd::PdClient,
request::{Collect, DefaultProcessor, KvRequest, Merge, Process, Shardable, SingleKey},
request::{
Collect, DefaultProcessor, HasKeys, KvRequest, Merge, Process, Shardable, SingleKey,
},
store::{store_stream_for_keys, store_stream_for_range_by_start_key, Store},
timestamp::TimestampExt,
transaction::HasLocks,
@ -359,6 +361,15 @@ impl Shardable for kvrpcpb::PessimisticLockRequest {
}
}
impl HasKeys for kvrpcpb::PessimisticLockRequest {
fn get_keys(&self) -> Vec<Key> {
self.mutations
.iter()
.map(|m| m.key.clone().into())
.collect()
}
}
impl Merge<kvrpcpb::PessimisticLockResponse> for Collect {
// FIXME: PessimisticLockResponse only contains values.
// We need to pair keys and values returned somewhere.

View File

@ -3,7 +3,7 @@
use crate::{
backoff::Backoff,
pd::{PdClient, PdRpcClient},
request::{Collect, CollectError, Plan, PlanBuilder, RetryOptions},
request::{Collect, CollectAndMatchKey, CollectError, Plan, PlanBuilder, RetryOptions},
timestamp::TimestampExt,
transaction::{buffer::Buffer, lowering::*},
BoundRange, Error, Key, KvPair, Result, Value,
@ -27,7 +27,7 @@ use tokio::{sync::RwLock, time::Duration};
/// and its mutations are readable for transactions with `start_ts` >= its `commit_ts`.
///
/// Mutations, or write operations made in a transaction are buffered locally and sent at the time of commit,
/// except for pessimisitc locking.
/// except for pessimistic locking.
/// In pessimistic mode, all write operations or `xxx_for_update` operations will first acquire pessimistic locks in TiKV.
/// A lock exists until the transaction is committed (in the first phase of 2PC) or rolled back, or it exceeds its Time To Live (TTL).
///
@ -126,8 +126,6 @@ impl<PdC: PdClient> Transaction<PdC> {
/// and the value is not cached in the local buffer.
/// So normal `get`-like commands after `get_for_update` will not be influenced, they still read values at `start_ts`.
///
/// Different from `get`, this request does not distinguish between empty values and non-existent keys
/// , i.e. querying non-existent keys will result in empty values.
///
/// It can only be used in pessimistic mode.
///
@ -150,10 +148,12 @@ impl<PdC: PdClient> Transaction<PdC> {
if !self.is_pessimistic() {
Err(Error::InvalidTransactionType)
} else {
let key = key.into();
let mut values = self.pessimistic_lock(iter::once(key.clone()), true).await?;
assert!(values.len() == 1);
Ok(values.pop().unwrap())
let mut pairs = self.pessimistic_lock(iter::once(key.into()), true).await?;
debug_assert!(pairs.len() <= 1);
match pairs.pop() {
Some(pair) => Ok(Some(pair.1)),
None => Ok(None),
}
}
}
@ -236,13 +236,12 @@ impl<PdC: PdClient> Transaction<PdC> {
/// and the value is not cached in the local buffer.
/// So normal `get`-like commands after `batch_get_for_update` will not be influenced, they still read values at `start_ts`.
///
/// Different from `batch_get`, this request does not distinguish between empty values and non-existent keys
/// , i.e. querying non-existent keys will result in empty values.
/// Non-existent entries will not appear in the result. The order of the keys is not retained in the result.
///
/// It can only be used in pessimistic mode.
///
/// # Examples
/// ```rust,no_run,compile_fail
/// ```rust,no_run
/// # use tikv_client::{Key, Value, Config, TransactionClient};
/// # use futures::prelude::*;
/// # use std::collections::HashMap;
@ -261,21 +260,16 @@ impl<PdC: PdClient> Transaction<PdC> {
/// txn.commit().await.unwrap();
/// # });
/// ```
// This is temporarily disabled because we cannot correctly match the keys and values.
// See `impl KvRequest for kvrpcpb::PessimisticLockRequest` for details.
#[allow(dead_code)]
async fn batch_get_for_update(
pub async fn batch_get_for_update(
&mut self,
keys: impl IntoIterator<Item = impl Into<Key>>,
) -> Result<impl Iterator<Item = KvPair>> {
self.check_allow_operation().await?;
if !self.is_pessimistic() {
Err(Error::InvalidTransactionType)
} else {
let keys: Vec<Key> = keys.into_iter().map(|it| it.into()).collect();
self.pessimistic_lock(keys.clone(), false).await?;
self.batch_get(keys).await
return Err(Error::InvalidTransactionType);
}
let keys: Vec<Key> = keys.into_iter().map(|it| it.into()).collect();
Ok(self.pessimistic_lock(keys, true).await?.into_iter())
}
/// Create a new 'scan' request.
@ -625,46 +619,50 @@ impl<PdC: PdClient> Transaction<PdC> {
.await
}
/// Pessimistically lock the keys.
/// Pessimistically lock the keys, and optionally retrieve corresponding values.
/// If a key does not exist, the corresponding pair will not appear in the result.
///
/// Once resolved it acquires a lock on the key in TiKV.
/// The lock prevents other transactions from mutating the entry until it is released.
/// Once resolved it acquires locks on the keys in TiKV.
/// A lock prevents other transactions from mutating the entry until it is released.
///
/// # Panics
///
/// Only valid for pessimistic transactions, panics if called on an optimistic transaction.
async fn pessimistic_lock(
&mut self,
keys: impl IntoIterator<Item = Key>,
need_value: bool,
) -> Result<Vec<Option<Value>>> {
) -> Result<Vec<KvPair>> {
assert!(
matches!(self.options.kind, TransactionKind::Pessimistic(_)),
"`pessimistic_lock` is only valid to use with pessimistic transactions"
);
let keys: Vec<Key> = keys.into_iter().collect();
if keys.is_empty() {
return Ok(vec![]);
}
let first_key = keys[0].clone();
let primary_lock = self.buffer.get_primary_key_or(&first_key).await;
let lock_ttl = DEFAULT_LOCK_TTL;
let for_update_ts = self.rpc.clone().get_timestamp().await?;
self.options.push_for_update_ts(for_update_ts.clone());
let request = new_pessimistic_lock_request(
keys.clone().into_iter(),
primary_lock,
self.timestamp.clone(),
lock_ttl,
DEFAULT_LOCK_TTL,
for_update_ts,
need_value,
);
let plan = PlanBuilder::new(self.rpc.clone(), request)
.resolve_lock(self.options.retry_options.lock_backoff.clone())
.preserve_keys()
.multi_region()
.retry_region(self.options.retry_options.region_backoff.clone())
.merge(Collect)
.merge(CollectAndMatchKey)
.plan();
let values = plan
.execute()
.await
.map(|r| r.into_iter().map(Into::into).collect());
let pairs = plan.execute().await;
self.start_auto_heartbeat().await;
@ -672,7 +670,7 @@ impl<PdC: PdClient> Transaction<PdC> {
self.buffer.lock(key).await;
}
values
pairs
}
/// Checks if the transaction can perform arbitrary operations.

View File

@ -213,12 +213,15 @@ async fn raw_bank_transfer() -> Result<()> {
/// Tests transactional API when there are multiple regions.
/// Write large volumes of data to enforce region splitting.
/// In order to test `scan`, data is uniformly inserted.
// FIXME: this test is stupid. We should use pd-ctl or config files to make
// multiple regions, instead of bulk writing.
#[tokio::test]
#[serial]
async fn txn_write_million() -> Result<()> {
const NUM_BITS_TXN: u32 = 7;
const NUM_BITS_KEY_PER_TXN: u32 = 3;
const NUM_BITS_TXN: u32 = 13;
const NUM_BITS_KEY_PER_TXN: u32 = 4;
let interval = 2u32.pow(32 - NUM_BITS_TXN - NUM_BITS_KEY_PER_TXN);
let value = "large_value".repeat(10);
clear_tikv().await;
let client = TransactionClient::new(pd_addrs()).await?;
@ -232,9 +235,9 @@ async fn txn_write_million() -> Result<()> {
})
.map(|u| u.to_be_bytes().to_vec())
.take(2usize.pow(NUM_BITS_KEY_PER_TXN))
.collect::<Vec<_>>(); // each txn puts 2 ^ 12 keys. 12 = 25 - 13
.collect::<Vec<_>>();
let mut txn = client.begin_optimistic().await?;
for (k, v) in keys.iter().zip(iter::repeat(1u32.to_be_bytes().to_vec())) {
for (k, v) in keys.iter().zip(iter::repeat(value.clone())) {
txn.put(k.clone(), v).await?;
}
txn.commit().await?;
@ -244,48 +247,71 @@ async fn txn_write_million() -> Result<()> {
assert_eq!(res.count(), 2usize.pow(NUM_BITS_KEY_PER_TXN));
txn.commit().await?;
}
/* FIXME: scan all keys will make the message size exceed its limit
// test scan
let limit = 2u32.pow(NUM_BITS_KEY_PER_TXN + NUM_BITS_TXN + 2); // large enough
let snapshot = client.snapshot(
client.current_timestamp().await?,
TransactionOptions::default(),
);
let res = snapshot.scan(vec![].., limit).await?;
assert_eq!(res.count(), 2usize.pow(NUM_BITS_KEY_PER_TXN + NUM_BITS_TXN));
// test scan
let limit = 2u32.pow(NUM_BITS_KEY_PER_TXN + NUM_BITS_TXN + 2); // large enough
let snapshot = client.snapshot(
client.current_timestamp().await?,
TransactionOptions::default(),
);
let res = snapshot.scan(vec![].., limit).await?;
assert_eq!(res.count(), 2usize.pow(NUM_BITS_KEY_PER_TXN + NUM_BITS_TXN));
// scan by small range and combine them
let mut rng = thread_rng();
let mut keys = gen_u32_keys(200, &mut rng)
.iter()
.cloned()
.collect::<Vec<_>>();
keys.sort();
// scan by small range and combine them
let mut rng = thread_rng();
let mut keys = gen_u32_keys(10, &mut rng)
.iter()
.cloned()
let mut sum = 0;
// empty key to key[0]
let snapshot = client.snapshot(
client.current_timestamp().await?,
TransactionOptions::default(),
);
let res = snapshot.scan(vec![]..keys[0].clone(), limit).await?;
sum += res.count();
// key[i] .. key[i+1]
for i in 0..keys.len() - 1 {
let res = snapshot
.scan(keys[i].clone()..keys[i + 1].clone(), limit)
.await?;
sum += res.count();
}
// keys[last] to unbounded
let res = snapshot.scan(keys[keys.len() - 1].clone().., limit).await?;
sum += res.count();
assert_eq!(sum, 2usize.pow(NUM_BITS_KEY_PER_TXN + NUM_BITS_TXN));
*/
// test batch_get and batch_get_for_update
const SKIP_BITS: u32 = 12; // do not retrieve all because there's a limit of message size
let mut cur = 0u32;
let keys = iter::repeat_with(|| {
let v = cur;
cur = cur.overflowing_add(interval * 2u32.pow(SKIP_BITS)).0;
v
})
.map(|u| u.to_be_bytes().to_vec())
.take(2usize.pow(NUM_BITS_KEY_PER_TXN + NUM_BITS_TXN - SKIP_BITS))
.collect::<Vec<_>>();
let mut txn = client.begin_pessimistic().await?;
let res = txn.batch_get(keys.clone()).await?.collect::<Vec<_>>();
assert_eq!(res.len(), keys.len());
let res = txn
.batch_get_for_update(keys.clone())
.await?
.collect::<Vec<_>>();
keys.sort();
let mut sum = 0;
// empty key to key[0]
let snapshot = client.snapshot(
client.current_timestamp().await?,
TransactionOptions::default(),
);
let res = snapshot.scan(vec![]..keys[0].clone(), limit).await?;
sum += res.count();
// key[i] .. key[i+1]
for i in 0..keys.len() - 1 {
let res = snapshot
.scan(keys[i].clone()..keys[i + 1].clone(), limit)
.await?;
sum += res.count();
}
// keys[last] to unbounded
let res = snapshot.scan(keys[keys.len() - 1].clone().., limit).await?;
sum += res.count();
assert_eq!(sum, 2usize.pow(NUM_BITS_KEY_PER_TXN + NUM_BITS_TXN));
assert_eq!(res.len(), keys.len());
txn.commit().await?;
Ok(())
}
@ -298,7 +324,7 @@ async fn txn_bank_transfer() -> Result<()> {
let people = gen_u32_keys(NUM_PEOPLE, &mut rng);
let mut txn = client
.begin_with_options(TransactionOptions::new_optimistic().try_one_pc())
.begin_with_options(TransactionOptions::new_optimistic())
.await?;
let mut sum: u32 = 0;
for person in &people {
@ -543,8 +569,7 @@ async fn raw_write_million() -> Result<()> {
#[serial]
async fn pessimistic_rollback() -> Result<()> {
clear_tikv().await;
let client =
TransactionClient::new_with_config(vec!["127.0.0.1:2379"], Default::default()).await?;
let client = TransactionClient::new_with_config(pd_addrs(), Default::default()).await?;
let mut preload_txn = client.begin_optimistic().await?;
let key1 = vec![1];
let value = key1.clone();
@ -575,8 +600,7 @@ async fn pessimistic_rollback() -> Result<()> {
#[serial]
async fn lock_keys() -> Result<()> {
clear_tikv().await;
let client =
TransactionClient::new_with_config(vec!["127.0.0.1:2379"], Default::default()).await?;
let client = TransactionClient::new_with_config(pd_addrs(), Default::default()).await?;
let k1 = b"key1".to_vec();
let k2 = b"key2".to_vec();
@ -606,6 +630,42 @@ async fn lock_keys() -> Result<()> {
Ok(())
}
#[tokio::test]
#[serial]
async fn get_for_update() -> Result<()> {
clear_tikv().await;
let client = TransactionClient::new_with_config(pd_addrs(), Default::default()).await?;
let key1 = "key".to_owned();
let key2 = "another key".to_owned();
let value1 = b"some value".to_owned();
let value2 = b"another value".to_owned();
let keys = vec![key1.clone(), key2.clone()];
let mut t1 = client.begin_pessimistic().await?;
let mut t2 = client.begin_pessimistic().await?;
let mut t0 = client.begin_pessimistic().await?;
t0.put(key1.clone(), value1).await?;
t0.put(key2.clone(), value2).await?;
t0.commit().await?;
assert!(t1.get(key1.clone()).await?.is_none());
assert!(t1.get_for_update(key1.clone()).await?.unwrap() == value1);
t1.commit().await?;
assert!(t2.batch_get(keys.clone()).await?.collect::<Vec<_>>().len() == 0);
let res: HashMap<_, _> = t2
.batch_get_for_update(keys.clone())
.await?
.map(From::from)
.collect();
t2.commit().await?;
assert!(res.get(&key1.into()).unwrap() == &value1);
assert!(res.get(&key2.into()).unwrap() == &value2);
Ok(())
}
#[tokio::test]
#[serial]
async fn pessimistic_heartbeat() -> Result<()> {

View File

@ -99,8 +99,8 @@ impl Connection {
let tso = TimestampOracle::new(id, &client)?;
let cluster = Cluster {
id,
members,
client,
members,
tso,
};
Ok(cluster)