client-rust/proto/pdpb.proto

1128 lines
29 KiB
Protocol Buffer
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

syntax = "proto3";
package pdpb;
import "metapb.proto";
import "eraftpb.proto";
import "raft_serverpb.proto";
import "replication_modepb.proto";
import "gogoproto/gogo.proto";
import "rustproto.proto";
option (gogoproto.sizer_all) = true;
option (gogoproto.marshaler_all) = true;
option (gogoproto.unmarshaler_all) = true;
option (rustproto.lite_runtime_all) = true;
option java_package = "org.tikv.kvproto";
service PD {
// GetClusterInfo get the information of this cluster. It does not require
// the cluster_id in request matchs the id of this cluster.
rpc GetClusterInfo(GetClusterInfoRequest) returns (GetClusterInfoResponse) {}
// GetMembers get the member list of this cluster. It does not require
// the cluster_id in request matchs the id of this cluster.
rpc GetMembers(GetMembersRequest) returns (GetMembersResponse) {}
rpc Tso(stream TsoRequest) returns (stream TsoResponse) {}
rpc Bootstrap(BootstrapRequest) returns (BootstrapResponse) {}
rpc IsBootstrapped(IsBootstrappedRequest) returns (IsBootstrappedResponse) {}
rpc AllocID(AllocIDRequest) returns (AllocIDResponse) {}
rpc IsSnapshotRecovering(IsSnapshotRecoveringRequest) returns (IsSnapshotRecoveringResponse) {}
rpc GetStore(GetStoreRequest) returns (GetStoreResponse) {}
rpc PutStore(PutStoreRequest) returns (PutStoreResponse) {}
rpc GetAllStores(GetAllStoresRequest) returns (GetAllStoresResponse) {}
rpc StoreHeartbeat(StoreHeartbeatRequest) returns (StoreHeartbeatResponse) {}
rpc RegionHeartbeat(stream RegionHeartbeatRequest) returns (stream RegionHeartbeatResponse) {}
rpc GetRegion(GetRegionRequest) returns (GetRegionResponse) {}
rpc GetPrevRegion(GetRegionRequest) returns (GetRegionResponse) {}
rpc GetRegionByID(GetRegionByIDRequest) returns (GetRegionResponse) {}
rpc ScanRegions(ScanRegionsRequest) returns (ScanRegionsResponse) {}
rpc AskSplit(AskSplitRequest) returns (AskSplitResponse) {
// Use AskBatchSplit instead.
option deprecated = true;
}
rpc ReportSplit(ReportSplitRequest) returns (ReportSplitResponse) {
// Use ResportBatchSplit instead.
option deprecated = true;
}
rpc AskBatchSplit(AskBatchSplitRequest) returns (AskBatchSplitResponse) {}
rpc ReportBatchSplit(ReportBatchSplitRequest) returns (ReportBatchSplitResponse) {}
rpc GetClusterConfig(GetClusterConfigRequest) returns (GetClusterConfigResponse) {}
rpc PutClusterConfig(PutClusterConfigRequest) returns (PutClusterConfigResponse) {}
rpc ScatterRegion(ScatterRegionRequest) returns (ScatterRegionResponse) {}
rpc GetGCSafePoint(GetGCSafePointRequest) returns (GetGCSafePointResponse) {}
rpc UpdateGCSafePoint(UpdateGCSafePointRequest) returns (UpdateGCSafePointResponse) {}
rpc UpdateServiceGCSafePoint(UpdateServiceGCSafePointRequest) returns (UpdateServiceGCSafePointResponse) {}
rpc GetGCSafePointV2(GetGCSafePointV2Request) returns (GetGCSafePointV2Response) {}
rpc WatchGCSafePointV2(WatchGCSafePointV2Request) returns (stream WatchGCSafePointV2Response) {}
rpc UpdateGCSafePointV2(UpdateGCSafePointV2Request) returns (UpdateGCSafePointV2Response) {}
rpc UpdateServiceSafePointV2(UpdateServiceSafePointV2Request) returns (UpdateServiceSafePointV2Response) {}
rpc GetAllGCSafePointV2(GetAllGCSafePointV2Request) returns (GetAllGCSafePointV2Response) {}
rpc SyncRegions(stream SyncRegionRequest) returns (stream SyncRegionResponse) {}
rpc GetOperator(GetOperatorRequest) returns (GetOperatorResponse) {}
rpc SyncMaxTS(SyncMaxTSRequest) returns (SyncMaxTSResponse) {}
rpc SplitRegions(SplitRegionsRequest) returns (SplitRegionsResponse) {}
rpc SplitAndScatterRegions(SplitAndScatterRegionsRequest) returns (SplitAndScatterRegionsResponse) {}
rpc GetDCLocationInfo(GetDCLocationInfoRequest) returns (GetDCLocationInfoResponse) {}
rpc StoreGlobalConfig(StoreGlobalConfigRequest) returns (StoreGlobalConfigResponse) {}
rpc LoadGlobalConfig(LoadGlobalConfigRequest) returns (LoadGlobalConfigResponse) {}
rpc WatchGlobalConfig(WatchGlobalConfigRequest) returns (stream WatchGlobalConfigResponse) {}
rpc ReportBuckets(stream ReportBucketsRequest) returns (ReportBucketsResponse) {}
rpc ReportMinResolvedTS(ReportMinResolvedTsRequest) returns (ReportMinResolvedTsResponse) {}
rpc SetExternalTimestamp(SetExternalTimestampRequest) returns (SetExternalTimestampResponse) {}
rpc GetExternalTimestamp(GetExternalTimestampRequest) returns (GetExternalTimestampResponse) {}
// Get the minimum timestamp across all keyspace groups from API server
// TODO: Currently, we need to ask API server to get the minimum timestamp.
// Once we support service discovery, we can remove it.
rpc GetMinTS (GetMinTSRequest) returns (GetMinTSResponse) {}
}
message WatchGlobalConfigRequest {
string config_path = 1;
int64 revision = 2;
}
message WatchGlobalConfigResponse {
repeated GlobalConfigItem changes = 1;
int64 revision = 2;
ResponseHeader header = 3;
}
message StoreGlobalConfigRequest {
repeated GlobalConfigItem changes = 1;
string config_path = 2;
}
message StoreGlobalConfigResponse {
Error error = 1;
}
message LoadGlobalConfigRequest {
repeated string names = 1;
string config_path = 2;
}
message LoadGlobalConfigResponse {
repeated GlobalConfigItem items = 1;
int64 revision = 2;
}
enum EventType {
PUT = 0;
DELETE = 1;
}
message GlobalConfigItem {
string name = 1;
// this field 'value' is replaced by the field 'payload'.
string value = 2;
Error error = 3;
EventType kind = 4;
// Since item value needs to support marshal of different struct types,
// it should be set to bytes instead of string.
bytes payload = 5;
}
message RequestHeader {
// cluster_id is the ID of the cluster which be sent to.
uint64 cluster_id = 1;
// sender_id is the ID of the sender server, also member ID or etcd ID.
uint64 sender_id = 2;
}
message ResponseHeader {
// cluster_id is the ID of the cluster which sent the response.
uint64 cluster_id = 1;
Error error = 2;
}
enum ErrorType {
OK = 0;
UNKNOWN = 1;
NOT_BOOTSTRAPPED = 2;
STORE_TOMBSTONE = 3;
ALREADY_BOOTSTRAPPED = 4;
INCOMPATIBLE_VERSION = 5;
REGION_NOT_FOUND = 6;
GLOBAL_CONFIG_NOT_FOUND = 7;
DUPLICATED_ENTRY = 8;
ENTRY_NOT_FOUND = 9;
INVALID_VALUE = 10;
// required watch revision is smaller than current compact/min revision.
DATA_COMPACTED = 11;
}
message Error {
ErrorType type = 1;
string message = 2;
}
message TsoRequest {
RequestHeader header = 1;
uint32 count = 2;
string dc_location = 3;
}
message Timestamp {
int64 physical = 1;
int64 logical = 2;
// Number of suffix bits used for global distinction,
// PD client will use this to compute a TSO's logical part.
uint32 suffix_bits = 3;
}
message TsoResponse {
ResponseHeader header = 1;
uint32 count = 2;
Timestamp timestamp = 3;
}
message BootstrapRequest {
RequestHeader header = 1;
metapb.Store store = 2;
metapb.Region region = 3;
}
message BootstrapResponse {
ResponseHeader header = 1;
replication_modepb.ReplicationStatus replication_status = 2;
}
message IsBootstrappedRequest {
RequestHeader header = 1;
}
message IsBootstrappedResponse {
ResponseHeader header = 1;
bool bootstrapped = 2;
}
message AllocIDRequest {
RequestHeader header = 1;
}
message AllocIDResponse {
ResponseHeader header = 1;
uint64 id = 2;
}
message IsSnapshotRecoveringRequest {
RequestHeader header = 1;
}
message IsSnapshotRecoveringResponse {
ResponseHeader header = 1;
bool marked = 2;
}
message GetStoreRequest {
RequestHeader header = 1;
uint64 store_id = 2;
}
message GetStoreResponse {
ResponseHeader header = 1;
metapb.Store store = 2;
StoreStats stats = 3;
}
message PutStoreRequest {
RequestHeader header = 1;
metapb.Store store = 2;
}
message PutStoreResponse {
ResponseHeader header = 1;
replication_modepb.ReplicationStatus replication_status = 2;
}
message GetAllStoresRequest {
RequestHeader header = 1;
// Do NOT return tombstone stores if set to true.
bool exclude_tombstone_stores = 2;
}
message GetAllStoresResponse {
ResponseHeader header = 1;
repeated metapb.Store stores = 2;
}
message GetRegionRequest {
RequestHeader header = 1;
bytes region_key = 2;
bool need_buckets = 3;
}
message GetRegionResponse {
reserved 4;
ResponseHeader header = 1;
metapb.Region region = 2;
metapb.Peer leader = 3;
// Leader considers that these peers are down.
repeated PeerStats down_peers = 5;
// Pending peers are the peers that the leader can't consider as
// working followers.
repeated metapb.Peer pending_peers = 6;
// buckets isn't nil if GetRegion.* requests set need_buckets.
metapb.Buckets buckets = 7;
}
message GetRegionByIDRequest {
RequestHeader header = 1;
uint64 region_id = 2;
bool need_buckets = 3;
}
// Use GetRegionResponse as the response of GetRegionByIDRequest.
message ScanRegionsRequest {
RequestHeader header = 1;
bytes start_key = 2;
int32 limit = 3; // no limit when limit <= 0.
bytes end_key = 4; // end_key is +inf when it is empty.
}
message Region {
metapb.Region region = 1;
metapb.Peer leader = 2;
// Leader considers that these peers are down.
repeated PeerStats down_peers = 3;
// Pending peers are the peers that the leader can't consider as
// working followers.
repeated metapb.Peer pending_peers = 4;
}
message ScanRegionsResponse {
ResponseHeader header = 1;
// Keep for backword compatibability.
repeated metapb.Region region_metas = 2;
repeated metapb.Peer leaders = 3;
// Extended region info with down/pending peers.
repeated Region regions = 4;
}
message GetClusterConfigRequest {
RequestHeader header = 1;
}
message GetClusterConfigResponse {
ResponseHeader header = 1;
metapb.Cluster cluster = 2;
}
message PutClusterConfigRequest {
RequestHeader header = 1;
metapb.Cluster cluster = 2;
}
message PutClusterConfigResponse {
ResponseHeader header = 1;
}
message Member {
// name is the name of the PD member.
string name = 1;
// member_id is the unique id of the PD member.
uint64 member_id = 2;
repeated string peer_urls = 3;
repeated string client_urls = 4;
int32 leader_priority = 5;
string deploy_path = 6;
string binary_version = 7;
string git_hash = 8;
string dc_location = 9;
}
message GetMembersRequest {
RequestHeader header = 1;
}
message GetMembersResponse {
ResponseHeader header = 1;
repeated Member members = 2;
Member leader = 3;
Member etcd_leader = 4;
map<string, Member> tso_allocator_leaders = 5;
}
message GetClusterInfoRequest {
ResponseHeader header = 1;
}
enum ServiceMode {
UNKNOWN_SVC_MODE = 0;
PD_SVC_MODE = 1;
API_SVC_MODE = 2;
}
message GetClusterInfoResponse {
ResponseHeader header = 1;
repeated ServiceMode serviceModes = 2;
// If service mode is API_SVC_MODE, this field will be set to the
// registered tso service addresses.
repeated string tso_urls = 3;
}
message PeerStats {
metapb.Peer peer = 1;
uint64 down_seconds = 2;
}
message RegionHeartbeatRequest {
RequestHeader header = 1;
metapb.Region region = 2;
// Leader Peer sending the heartbeat.
metapb.Peer leader = 3;
// Leader considers that these peers are down.
repeated PeerStats down_peers = 4;
// Pending peers are the peers that the leader can't consider as
// working followers.
repeated metapb.Peer pending_peers = 5;
// Bytes read/written during this period.
uint64 bytes_written = 6;
uint64 bytes_read = 7;
// Keys read/written during this period.
uint64 keys_written = 8;
uint64 keys_read = 9;
// Approximate region size.
uint64 approximate_size = 10;
reserved 11;
// Actually reported time interval
TimeInterval interval = 12;
// Approximate number of keys.
uint64 approximate_keys = 13;
// Term is the term of raft group.
uint64 term = 14;
replication_modepb.RegionReplicationStatus replication_status = 15;
// QueryStats reported write query stats, and there are read query stats in store heartbeat
QueryStats query_stats = 16;
// cpu_usage is the CPU time usage of the leader region since the last heartbeat,
// which is calculated by cpu_time_delta/heartbeat_reported_interval.
uint64 cpu_usage = 17;
// (Serverless) Approximate size of key-value pairs for billing.
// It's counted on size of user key & value (excluding metadata fields), before compression, and latest versions only.
uint64 approximate_kv_size = 18;
}
message ChangePeer {
metapb.Peer peer = 1;
eraftpb.ConfChangeType change_type = 2;
}
message ChangePeerV2 {
// If changes is empty, it means that to exit joint state.
repeated ChangePeer changes = 1;
}
message TransferLeader {
metapb.Peer peer = 1;
repeated metapb.Peer peers = 2;
}
message Merge {
metapb.Region target = 1;
}
message SplitRegion {
CheckPolicy policy = 1;
repeated bytes keys = 2;
}
message SwitchWitness {
uint64 peer_id = 1;
bool is_witness = 2;
}
message BatchSwitchWitness {
repeated SwitchWitness switch_witnesses = 1;
}
enum CheckPolicy {
SCAN = 0;
APPROXIMATE = 1;
USEKEY = 2;
}
message RegionHeartbeatResponse {
ResponseHeader header = 1;
// Notice, Pd only allows handling reported epoch >= current pd's.
// Leader peer reports region status with RegionHeartbeatRequest
// to pd regularly, pd will determine whether this region
// should do ChangePeer or not.
// E,g, max peer number is 3, region A, first only peer 1 in A.
// 1. Pd region state -> Peers (1), ConfVer (1).
// 2. Leader peer 1 reports region state to pd, pd finds the
// peer number is < 3, so first changes its current region
// state -> Peers (1, 2), ConfVer (1), and returns ChangePeer Adding 2.
// 3. Leader does ChangePeer, then reports Peers (1, 2), ConfVer (2),
// pd updates its state -> Peers (1, 2), ConfVer (2).
// 4. Leader may report old Peers (1), ConfVer (1) to pd before ConfChange
// finished, pd stills responses ChangePeer Adding 2, of course, we must
// guarantee the second ChangePeer can't be applied in TiKV.
ChangePeer change_peer = 2;
// Pd can return transfer_leader to let TiKV does leader transfer itself.
TransferLeader transfer_leader = 3;
// ID of the region
uint64 region_id = 4;
metapb.RegionEpoch region_epoch = 5;
// Leader of the region at the moment of the corresponding request was made.
metapb.Peer target_peer = 6;
Merge merge = 7;
// PD sends split_region to let TiKV split a region into two regions.
SplitRegion split_region = 8;
// Multiple change peer operations atomically.
// Note: PD can use both ChangePeer and ChangePeerV2 at the same time
// (not in the same RegionHeartbeatResponse).
// Now, PD use ChangePeerV2 in following scenarios:
// 1. replacing peers
// 2. demoting voter directly
ChangePeerV2 change_peer_v2 = 9;
BatchSwitchWitness switch_witnesses = 10;
}
message AskSplitRequest {
RequestHeader header = 1;
metapb.Region region = 2;
}
message AskSplitResponse {
ResponseHeader header = 1;
// We split the region into two, first uses the origin
// parent region id, and the second uses the new_region_id.
// We must guarantee that the new_region_id is global unique.
uint64 new_region_id = 2;
// The peer ids for the new split region.
repeated uint64 new_peer_ids = 3;
}
message ReportSplitRequest {
RequestHeader header = 1;
metapb.Region left = 2;
metapb.Region right = 3;
}
message ReportSplitResponse {
ResponseHeader header = 1;
}
message AskBatchSplitRequest {
RequestHeader header = 1;
metapb.Region region = 2;
uint32 split_count = 3;
}
message SplitID {
uint64 new_region_id = 1;
repeated uint64 new_peer_ids = 2;
}
message AskBatchSplitResponse {
ResponseHeader header = 1;
repeated SplitID ids = 2;
}
message ReportBatchSplitRequest {
RequestHeader header = 1;
repeated metapb.Region regions = 2;
}
message ReportBatchSplitResponse {
ResponseHeader header = 1;
}
message TimeInterval {
// The unix timestamp in seconds of the start of this period.
uint64 start_timestamp = 1;
// The unix timestamp in seconds of the end of this period.
uint64 end_timestamp = 2;
}
message RecordPair {
string key = 1;
uint64 value = 2;
}
message PeerStat {
uint64 region_id = 1;
uint64 read_keys = 2;
uint64 read_bytes = 3;
QueryStats query_stats = 4;
uint64 written_keys = 5;
uint64 written_bytes = 6;
}
message StoreStats {
uint64 store_id = 1;
// Capacity for the store.
uint64 capacity = 2;
// Available size for the store.
uint64 available = 3;
// Total region count in this store.
uint32 region_count = 4;
// Current sending snapshot count.
uint32 sending_snap_count = 5;
// Current receiving snapshot count.
uint32 receiving_snap_count = 6;
// When the store is started (unix timestamp in seconds).
uint32 start_time = 7;
// How many region is applying snapshot.
uint32 applying_snap_count = 8;
// If the store is busy
bool is_busy = 9;
// Actually used space by db
uint64 used_size = 10;
// Bytes written for the store during this period.
uint64 bytes_written = 11;
// Keys written for the store during this period.
uint64 keys_written = 12;
// Bytes read for the store during this period.
uint64 bytes_read = 13;
// Keys read for the store during this period.
uint64 keys_read = 14;
// Actually reported time interval
TimeInterval interval = 15;
// Threads' CPU usages in the store
repeated RecordPair cpu_usages = 16;
// Threads' read disk I/O rates in the store
repeated RecordPair read_io_rates = 17;
// Threads' write disk I/O rates in the store
repeated RecordPair write_io_rates = 18;
// Operations' latencies in the store
repeated RecordPair op_latencies = 19;
// Hot peer stat in the store
repeated PeerStat peer_stats = 20;
// Store query stats
QueryStats query_stats = 21;
// Score that represents the speed of the store, ranges in [1, 100], lower is better.
uint64 slow_score = 22;
// Damaged regions on the store that need to be removed by PD.
repeated uint64 damaged_regions_id = 23;
// If the apply worker is busy, namely high apply wait duration
bool is_apply_busy = 24;
// Snapshot stats in the store
repeated SnapshotStat snapshot_stats = 25;
SlowTrend slow_trend = 26;
// If the grpc server is paused.
bool is_grpc_paused = 27;
// Total memory of the store in bytes.
uint64 total_memory = 28;
// Used memory of the store in bytes.
uint64 used_memory = 29;
}
message SlowTrend{
double cause_value = 1;
double cause_rate = 2;
double result_value = 3;
double result_rate = 4;
}
message SnapshotStat{
uint64 region_id = 1;
// Generate snapshot duration
uint64 generate_duration_sec = 2;
// Send snapshot duration
uint64 send_duration_sec = 3;
// |-- waiting --|-- generate ---- send --|
// |-----------total duration---------------|
// Total duration include waiting and executing duration
uint64 total_duration_sec = 4;
// Size is the transport data size
uint64 transport_size = 5;
}
message PeerReport {
raft_serverpb.RaftLocalState raft_state = 1;
raft_serverpb.RegionLocalState region_state = 2;
bool is_force_leader = 3;
// The peer has proposed but uncommitted commit merge.
bool has_commit_merge = 4;
}
message StoreReport {
repeated PeerReport peer_reports = 1;
uint64 step = 2;
}
message StoreHeartbeatRequest {
RequestHeader header = 1;
StoreStats stats = 2;
// Detailed store report that is only filled up on PD's demand for online unsafe recovery.
StoreReport store_report = 3;
replication_modepb.StoreDRAutoSyncStatus dr_autosync_status = 4;
}
message DemoteFailedVoters {
uint64 region_id = 1;
repeated metapb.Peer failed_voters = 2;
}
message ForceLeader {
// The store ids of the failed stores, TiKV uses it to decide if a peer is alive.
repeated uint64 failed_stores = 1;
// The region ids of the peer which is to be force leader.
repeated uint64 enter_force_leaders = 2;
}
message RecoveryPlan {
// Create empty regions to fill the key range hole.
repeated metapb.Region creates = 1;
// Update the meta of the regions, including peer lists, epoch and key range.
repeated metapb.Region updates = 2 [deprecated=true];
// Tombstone the peers on the store locally.
repeated uint64 tombstones = 3;
// Issue conf change that demote voters on failed stores to learners on the regions.
repeated DemoteFailedVoters demotes = 4;
// Make the peers to be force leaders.
ForceLeader force_leader = 5;
// Step is an increasing number to note the round of recovery,
// It should be filled in the corresponding store report.
uint64 step = 6;
}
message AwakenRegions {
// Awake all regions if abnormal_stores is empty.
repeated uint64 abnormal_stores = 1;
}
enum ControlGrpcEvent {
// Pause TiKV grpc server.
PAUSE = 0;
// Resume TiKV grpc server.
RESUME = 1;
}
message ControlGrpc {
ControlGrpcEvent ctrl_event = 1;
}
message StoreHeartbeatResponse {
ResponseHeader header = 1;
replication_modepb.ReplicationStatus replication_status = 2;
string cluster_version = 3;
// Used by online unsafe recovery to request store report.
// Now it's substituted by reusing recovery_plan field. PD will send a empty
// recovery plan instead to request store report.
bool require_detailed_report = 4 [deprecated=true];
// Operations of recovery. After the plan is executed, TiKV should attach the
// store report in store heartbeat.
RecoveryPlan recovery_plan = 5;
// Pd can return awaken_regions to let TiKV awaken hibernated regions itself.
AwakenRegions awaken_regions = 6;
// Pd can return operations to let TiKV forcely PAUSE | RESUME grpc server.
ControlGrpc control_grpc = 7;
}
message ScatterRegionRequest {
RequestHeader header = 1;
uint64 region_id = 2 [deprecated=true];
// PD will use these region information if it can't find the region.
// For example, the region is just split and hasn't report to PD yet.
metapb.Region region = 3;
metapb.Peer leader = 4;
// If group is defined, the regions with the same group would be scattered as a whole group.
// If not defined, the regions would be scattered in a cluster level.
string group = 5;
// If regions_id is defined, the region_id would be ignored.
repeated uint64 regions_id = 6;
uint64 retry_limit = 7;
bool skip_store_limit = 8;
}
message ScatterRegionResponse {
ResponseHeader header = 1;
uint64 finished_percentage = 2;
}
message GetGCSafePointRequest {
RequestHeader header = 1;
}
message GetGCSafePointResponse {
ResponseHeader header = 1;
uint64 safe_point = 2;
}
message UpdateGCSafePointRequest {
RequestHeader header = 1;
uint64 safe_point = 2;
}
message UpdateGCSafePointResponse {
ResponseHeader header = 1;
uint64 new_safe_point = 2;
}
message UpdateServiceGCSafePointRequest {
RequestHeader header = 1;
bytes service_id = 2;
int64 TTL = 3;
uint64 safe_point = 4;
}
message UpdateServiceGCSafePointResponse {
ResponseHeader header = 1;
bytes service_id = 2;
int64 TTL = 3;
uint64 min_safe_point = 4;
}
message GetGCSafePointV2Request {
RequestHeader header = 1;
uint32 keyspace_id = 2;
}
message GetGCSafePointV2Response {
ResponseHeader header = 1;
uint64 safe_point = 2;
}
message WatchGCSafePointV2Request {
RequestHeader header = 1;
int64 revision = 2;
}
// SafePointEvent is for the rpc WatchGCSafePointV2.
message SafePointEvent {
uint32 keyspace_id = 1;
uint64 safe_point = 2;
EventType type = 3;
}
message WatchGCSafePointV2Response {
ResponseHeader header = 1;
repeated SafePointEvent events = 2;
int64 revision = 3;
}
message UpdateGCSafePointV2Request {
RequestHeader header = 1;
uint32 keyspace_id = 2;
uint64 safe_point = 3;
}
message UpdateGCSafePointV2Response {
ResponseHeader header = 1;
uint64 new_safe_point = 2;
}
message UpdateServiceSafePointV2Request {
RequestHeader header = 1;
uint32 keyspace_id = 2;
bytes service_id = 3;
uint64 safe_point = 4;
// Safe point will be set to expire on (PD Server time + TTL),
// pass in a ttl < 0 to remove target safe point;
// pass in MAX_INT64 to set a safe point that never expire.
// This should be set by component that may crash unexpectedly so that it doesn't block
// cluster garbage collection.
int64 ttl = 5;
}
message UpdateServiceSafePointV2Response {
ResponseHeader header = 1;
bytes service_id = 2;
int64 ttl = 3;
uint64 min_safe_point = 4;
}
message GetAllGCSafePointV2Request {
RequestHeader header = 1;
}
message GCSafePointV2 {
uint32 keyspace_id = 1;
uint64 gc_safe_point = 2;
}
message GetAllGCSafePointV2Response {
ResponseHeader header = 1;
repeated GCSafePointV2 gc_safe_points = 2;
int64 revision = 3;
}
message RegionStat {
// Bytes read/written during this period.
uint64 bytes_written = 1;
uint64 bytes_read = 2;
// Keys read/written during this period.
uint64 keys_written = 3;
uint64 keys_read = 4;
}
message SyncRegionRequest{
RequestHeader header = 1;
Member member = 2;
// the follower PD will use the start index to locate historical changes
// that require synchronization.
uint64 start_index = 3;
}
message PeersStats {
repeated PeerStats peers = 1;
}
message Peers {
repeated metapb.Peer peers = 1;
}
message SyncRegionResponse{
ResponseHeader header = 1;
// the leader PD will send the repsonds include
// changed regions records and the index of the first record.
repeated metapb.Region regions = 2;
uint64 start_index = 3;
repeated RegionStat region_stats = 4;
repeated metapb.Peer region_leaders = 5;
// the buckets informations without stats.
repeated metapb.Buckets buckets = 6;
repeated PeersStats down_peers = 16;
repeated Peers pending_peers = 17;
}
message GetOperatorRequest {
RequestHeader header = 1;
uint64 region_id = 2;
}
enum OperatorStatus {
SUCCESS = 0;
TIMEOUT = 1;
CANCEL = 2;
REPLACE = 3;
RUNNING = 4;
}
message GetOperatorResponse {
ResponseHeader header = 1;
uint64 region_id = 2;
bytes desc = 3;
OperatorStatus status = 4;
bytes kind = 5;
}
message SyncMaxTSRequest {
RequestHeader header = 1;
Timestamp max_ts = 2;
// If skip_check is true, the sync will try to write the max_ts without checking whether it's bigger.
bool skip_check = 3;
}
message SyncMaxTSResponse {
ResponseHeader header = 1;
Timestamp max_local_ts = 2;
repeated string synced_dcs = 3;
}
message SplitRegionsRequest {
RequestHeader header = 1;
repeated bytes split_keys = 2;
uint64 retry_limit = 3;
}
message SplitRegionsResponse {
ResponseHeader header = 1;
uint64 finished_percentage = 2;
repeated uint64 regions_id = 3;
}
message SplitAndScatterRegionsRequest {
RequestHeader header = 1;
repeated bytes split_keys = 2;
string group = 3;
uint64 retry_limit = 4;
}
message SplitAndScatterRegionsResponse {
ResponseHeader header = 1;
uint64 split_finished_percentage = 2;
uint64 scatter_finished_percentage = 3;
repeated uint64 regions_id = 4;
}
message GetDCLocationInfoRequest {
RequestHeader header = 1;
string dc_location = 2;
}
message GetDCLocationInfoResponse {
ResponseHeader header = 1;
// suffix sign
int32 suffix = 2;
// max_ts will be included into this response if PD leader think the receiver needs,
// which it's set when the number of the max suffix bits changes.
Timestamp max_ts = 3;
}
message QueryStats {
uint64 GC = 1;
uint64 Get = 2;
uint64 Scan = 3;
uint64 Coprocessor = 4;
uint64 Delete = 5;
uint64 DeleteRange = 6;
uint64 Put = 7;
uint64 Prewrite = 8;
uint64 AcquirePessimisticLock = 9;
uint64 Commit = 10;
uint64 Rollback = 11;
}
enum QueryKind {
Others = 0;
GC = 1;
Get = 2;
Scan = 3;
Coprocessor = 4;
Delete = 5;
DeleteRange = 6;
Put = 7;
Prewrite = 8;
AcquirePessimisticLock = 9;
Commit = 10;
Rollback = 11;
}
message ReportBucketsRequest {
RequestHeader header = 1;
metapb.RegionEpoch region_epoch = 2;
metapb.Buckets buckets = 3;
}
message ReportBucketsResponse {
ResponseHeader header = 1;
}
message ReportMinResolvedTsRequest {
RequestHeader header = 1;
uint64 store_id = 2;
uint64 min_resolved_ts = 3;
}
message ReportMinResolvedTsResponse {
ResponseHeader header = 1;
}
message SetExternalTimestampRequest {
RequestHeader header = 1;
uint64 timestamp = 2;
}
message SetExternalTimestampResponse {
ResponseHeader header = 1;
}
message GetExternalTimestampRequest {
RequestHeader header = 1;
}
message GetExternalTimestampResponse {
ResponseHeader header = 1;
uint64 timestamp = 2;
}
message GetMinTSRequest {
RequestHeader header = 1;
}
message GetMinTSResponse {
ResponseHeader header = 1;
Timestamp timestamp = 2;
}