Update 2025-01-21-stack-release.md
This commit is contained in:
parent
47d9a477b7
commit
46d4516b54
|
@ -1,10 +1,10 @@
|
|||
---
|
||||
layout: post
|
||||
title: "High Performance and Easy Deployment of vLLM in K8S with “vLLM production-stack”"
|
||||
thumbnail-img: /assets/img/stack-thumbnail.png
|
||||
share-img: /assets/img/stack-thumbnail.png
|
||||
thumbnail-img: /assets/figure/stack/stack-thumbnail.png
|
||||
share-img: /assets/figure/stack/stack-thumbnail.png
|
||||
author: LMCache Team
|
||||
image: /assets/img/stack-thumbnail.png
|
||||
image: /assets/figure/stack/stack-thumbnail.png
|
||||
---
|
||||
<br>
|
||||
|
||||
|
@ -27,7 +27,7 @@ image: /assets/img/stack-thumbnail.png
|
|||
How do we extend its power into a **full-stack** inference system that any organization can deploy at scale with *high reliability*, *high throughput*, and *low latency*? That’s precisely why the LMCache team and the vLLM team built **vLLM production-stack**.
|
||||
|
||||
<div align="center">
|
||||
<img src="/assets/img/stack-thumbnail.png" alt="Icon" style="width: 60%; vertical-align:middle;">
|
||||
<img src="/assets/figure/stack/stack-thumbnail.png" alt="Icon" style="width: 60%; vertical-align:middle;">
|
||||
</div>
|
||||
|
||||
# Introducing "*vLLM Production-Stack*"
|
||||
|
@ -41,7 +41,7 @@ How do we extend its power into a **full-stack** inference system that any organ
|
|||
|
||||
Below is a quick snapshot comparing vLLM production-stack with its closest counterparts:
|
||||
<div align="center">
|
||||
<img src="/assets/img/stack-table.png" alt="Icon" style="width: 90%; vertical-align:middle;">
|
||||
<img src="/assets/figure/stack/stack-table.png" alt="Icon" style="width: 90%; vertical-align:middle;">
|
||||
</div>
|
||||
|
||||
### The Design
|
||||
|
@ -54,7 +54,7 @@ At a high level:
|
|||
- Observability modules gather metrics like TTFT (Time-To-First-Token), TBT (Time-Between-Tokens), and throughput, giving you real-time insights into your system’s health.
|
||||
|
||||
<div align="center">
|
||||
<img src="/assets/img/stack-overview-2.png" alt="Icon" style="width: 90%; vertical-align:middle;">
|
||||
<img src="/assets/figure/stack/stack-overview-2.png" alt="Icon" style="width: 90%; vertical-align:middle;">
|
||||
</div>
|
||||
|
||||
# Advantage #1: Easy Deployment
|
||||
|
@ -72,18 +72,18 @@ We conduct a benchmark of multi-round Q&A workload on vLLM production-stack and
|
|||
The results show vLLM stack outperforms other setups across key metrics (time to first token and inter token latency).
|
||||
|
||||
<div align="center">
|
||||
<img src="/assets/img/stack-ttft.png" alt="Icon" style="width: 60%; vertical-align:middle;">
|
||||
<img src="/assets/figure/stack/stack-ttft.png" alt="Icon" style="width: 60%; vertical-align:middle;">
|
||||
</div>
|
||||
|
||||
<div align="center">
|
||||
<img src="/assets/img/stack-itl.png" alt="Icon" style="width: 60%; vertical-align:middle;">
|
||||
<img src="/assets/figure/stack/stack-itl.png" alt="Icon" style="width: 60%; vertical-align:middle;">
|
||||
</div>
|
||||
|
||||
# Advantage #3: Effortless Monitoring
|
||||
Keep real-time tracking of your LLM inference cluster with key metrics including latency distributions, number of requests over time, KV cache hit rate.
|
||||
|
||||
<div align="center">
|
||||
<img src="/assets/img/stack-panel.png" alt="Icon" style="width: 70%; vertical-align:middle;">
|
||||
<img src="/assets/figure/stack/stack-panel.png" alt="Icon" style="width: 70%; vertical-align:middle;">
|
||||
</div>
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue