Merge branch 'main' of github.com:vllm-project/vllm-blog-source
This commit is contained in:
commit
cd252bd0e6
|
@ -264,14 +264,14 @@ If you are not sure about the deployment setting and the distribution of the use
|
|||
- Disable chunked prefill `--enable-chunked-prefill=False`
|
||||
- Disable prefix caching
|
||||
- If the model supports long context length, set the `--max-seq-len-to-capture` to 16384
|
||||
- Set the `--num-scheduler-step` to 10 or 15.
|
||||
- Set `--num-scheduler-steps` to 10 or 15.
|
||||
- Set the AMD environment:
|
||||
- `sh -c 'echo 0 > /proc/sys/kernel/numa_balancing' `
|
||||
- `export NCCL_MIN_NCHANNELS=112`
|
||||
- Increase `--max-num-seqs` to 512 and above, depending on the GPU memory and compute resource of the GPUs.
|
||||
|
||||
```bash
|
||||
VLLM_USE_TRITON_FLASH_ATTN=0 vllm serve meta-llama/Llama-3.1-70B-Instruct --host 0.0.0.0 --port 8000 -tp 4 --max-num-seqs 1024 --max-seq-len-to-capture 16384 --served-model-name meta-llama/Llama-3.1-70B-Instruct --enable-chunked-prefill=False --num-scheduler-step 15 --max-num-seqs 1024
|
||||
VLLM_USE_TRITON_FLASH_ATTN=0 vllm serve meta-llama/Llama-3.1-70B-Instruct --host 0.0.0.0 --port 8000 -tp 4 --max-num-seqs 1024 --max-seq-len-to-capture 16384 --served-model-name meta-llama/Llama-3.1-70B-Instruct --enable-chunked-prefill=False --num-scheduler-steps 15 --max-num-seqs 1024
|
||||
```
|
||||
|
||||
For quick setup, we have compiled the Docker Image of vLLM 0.6.2 (commit: _cb3b2b9ba4a95c413a879e30e2b8674187519a93_) to Github Container Registry.
|
||||
|
@ -301,7 +301,7 @@ sudo docker run -it \
|
|||
Now launch the LLM server with the parameters that we have found:
|
||||
|
||||
```bash
|
||||
VLLM_USE_TRITON_FLASH_ATTN=0 vllm serve meta-llama/Llama-3.1-70B-Instruct --host 0.0.0.0 --port 8000 -tp 4 --max-num-seqs 1024 --max-seq-len-to-capture 16384 --served-model-name meta-llama/Llama-3.1-70B-Instruct --enable-chunked-prefill=False --num-scheduler-step 15 --max-num-seqs 1024
|
||||
VLLM_USE_TRITON_FLASH_ATTN=0 vllm serve meta-llama/Llama-3.1-70B-Instruct --host 0.0.0.0 --port 8000 -tp 4 --max-num-seqs 1024 --max-seq-len-to-capture 16384 --served-model-name meta-llama/Llama-3.1-70B-Instruct --enable-chunked-prefill=False --num-scheduler-steps 15 --max-num-seqs 1024
|
||||
```
|
||||
|
||||
### Conclusion
|
||||
|
@ -336,5 +336,5 @@ We have built the ROCm compatible vLLM docker from Dockerfile.rocm found in the
|
|||
| ------------- | ------------- |
|
||||
| vLLM Default Configuration | `VLLM_RPC_TIMEOUT=30000 VLLM_USE_TRITON_FLASH_ATTN=0 vllm serve Llama-3.1-405B-Instruct -tp 8 --max-num-seqs 1024 --max-num-batched-tokens 1024 ` |
|
||||
| TGI Default Configuration | `ROCM_USE_FLASH_ATTN_V2_TRITON=false TRUST_REMOTE_CODE=true text-generation-launcher --num-shard 8 --sharded true --max-concurrent-requests 1024 --model-id Llama-3.1-405B-Instruct` |
|
||||
| vLLM (This Guide) | `VLLM_RPC_TIMEOUT=30000 VLLM_USE_TRITON_FLASH_ATTN=0 vllm serve Llama-3.1-405B-Instruct -tp 8 --max-seq-len-to-capture 16384 --enable-chunked-prefill=False --num-scheduler-step 15 --max-num-seqs 1024 ` |
|
||||
| TGI (This Guide) | `ROCM_USE_FLASH_ATTN_V2_TRITON=false TRUST_REMOTE_CODE=true text-generation-launcher --num-shard 8 --sharded true --max-concurrent-requests 1024 --max-total-tokens 131072 --max-input-tokens 131000 --model-id Llama-3.1-405B-Instruct` |
|
||||
| vLLM (This Guide) | `VLLM_RPC_TIMEOUT=30000 VLLM_USE_TRITON_FLASH_ATTN=0 vllm serve Llama-3.1-405B-Instruct -tp 8 --max-seq-len-to-capture 16384 --enable-chunked-prefill=False --num-scheduler-steps 15 --max-num-seqs 1024 ` |
|
||||
| TGI (This Guide) | `ROCM_USE_FLASH_ATTN_V2_TRITON=false TRUST_REMOTE_CODE=true text-generation-launcher --num-shard 8 --sharded true --max-concurrent-requests 1024 --max-total-tokens 131072 --max-input-tokens 131000 --model-id Llama-3.1-405B-Instruct` |
|
||||
|
|
Loading…
Reference in New Issue